首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
The melting temperature, melting enthalpy, and specific heat capacities (C p) of 5′-deoxy-5′-iodo-2′,3′-O-isopropylidene-5-fluorouridine (DIOIPF) were measured using DSC-60 Differential Scanning Calorimetry. The melting temperature and melting enthalpy were obtained to be 453.80 K and 33.22 J g?1, respectively. The relationship between the specific heat capacity and temperature was obtained to be C p/J g?1 K?1 = 2.0261 – 0.0096T + 2 × 10?5 T 2 at the temperature range from 320.15 to 430.15 K. The thermal decomposition process was studied by the TG–DTA analyzer. The results showed that the thermal decomposition temperature of DIOIPF was above 487.84 K, and the decomposition process can be divided into three stages: the first stage is the decomposition of impurities, the mass loss in the second stage may be the sublimation of iodine and thermal decomposition process of the side-group C4H2O2N2F, and the third stage may be the thermal decomposition process of both the groups –CH3 and –CH2OCH2–. The obtained thermodynamic basic data are helpful for exploiting new synthetic method, engineering design, and commercial process of DIOIPF.  相似文献   

2.
In the research, thermogravimetry (TG), a combination of thermogravimetry and Fourier transform infrared spectrometer (TG–FTIR) and X-ray diffraction (XRD) were used to investigate pyrolysis characteristics of moso bamboo (Phyllostachys pubescens). The Flynn–Wall–Ozawa and Coats–Redfern (modified) methods were used to determine the apparent activation energy (Ea). The TG curve indicated that the pyrolysis process of moso bamboo included three steps and the main pyrolysis occurred in the second steps with temperature range from 450 K to 650 K and over 68.69% mass was degraded. TG–FTIR analysis showed that the main pyrolysis products included absorbed water (H2O), methane gas (CH4), carbon dioxide (CO2), acids and aldehydes, ammonia gas (NH3), etc. XRD analysis expressed that the index and width crystallinity of moso bamboo gradually increased from 273 K to 538 K and cellulose gradually degraded from amorphous region to crystalline region. The Ea values of moso bamboo increased with conversion rate increase from 10 to 70. The Ea values were, respectively 153.37–198.55 kJ/mol and 152.14–197.87 kJ/mol based on Flynn–Wall–Ozawa and Coats–Redfern (modified) methods. The information was very helpful and significant to design manufacturing process of bio-energy, made from moso bamboo, using gasification or pyrolysis methods.  相似文献   

3.
TG, DTG, DTA, DDTA and ΔH analyses of zirconium(IV) acetylacetonate, Zr(C6H7O2)4 (= I), were performed in a helium atmosphere with a Netzsch Thermal Analyser STA 429. The enthalpies of the main steps of transformation were computed to be +42.182 J·g?1 and ?21.113 J·g?1. Pure I is thermally stable up to about 199°C in He gas, and melting too occurs at about 199°C. Four well-defined decomposition steps were observed over the range between ambient and 600 °C, accompanied by a weight loss of 61.59%. The final product contained pure ZrO. The unique shapes of the TG and DTA curves could be used for the identification of I.  相似文献   

4.
Heat capacities C p(T) of L-valine and DL-valine were measured in the temperature range 6–300 K with an adiabatic calorimeter; thermodynamic functions were calculated based on these measurements. At 298.15 K, the values of heat capacity, C p; entropy, S m 0 (T) ? S m 0 (0); enthalpy, H m 0 (T) ? H m 0 (0) of L-valine are equal, respectively, to 167.9 ± 0.3 J K?1 mol?1; 178.5 ± 0.4 J K?1 mol?1; and 27510 ± 60 J mol?1. For DL-valine, these values are equal, respectively, to 167.3 ± 0.3 J K?1 mol?1, 174.4 ± 0.3 J K?1 mol?1, and 27000 ± 50 J mol?1. The difference between the heat capacities of enantiomer and racemate has been calculated and compared with the similar data for serines, cysteines, and phenylglycines.  相似文献   

5.
The analysed substances, procaine and benzocaine, are two anaesthetic agents currently being administered in tablet form, also in the topical (cream, gel, balm) and injectable dosage forms. The TG/DTG/DTA curves were obtained in air at different heating rates. For determination of the heat effects, the DTA curves (in μV) were changed with the heat flow curves (in mW), so that the peak area corresponds to an energy in J g?1 or kJ mol?1. The non-isothermal experiments are preformed to investigate the thermal degradation process of these active substances, both as a solid and are performed in a dynamic atmosphere of air at different heating rates, by heating from room temperature to 500 °C. The kinetic analysis was performed using the TG data in air for the first step of substance’s decomposition at four heating rates: 7, 10, 12 and 15 °C min?1. The data were processed according to an appropriate strategy to the following kinetic methods: Kissinger–Akahira–Sunose, Flynn–Wall–Ozawa, Friedman and NPK, to obtain realistic kinetic parameters, even if the decomposition process is a complex one. Thermal analysis was supplemented using Fourier Transform infrared spectroscopy coupled with the TG device to identify the anaesthetics with any products which may have formed (EGA—the evolved gas analysis).  相似文献   

6.
Lignin polymers in bamboo (Phyllostachys pubescens) were decomposed into polyphenols at high temperatures and oxidized for the introduction of quinone groups from peroxidase extracted from bamboo shoots and catalysis of UV. According to the results of FT-IR spectra analysis, neutral proteases (NPs) can be immobilized on the oxidized lignin by covalent bonding formed by amine group and quinone group. The optimum condition for the immobilization of NPs on the bamboo bar was obtained at pH 7.0, 40 °C, and duration of 4 h; the amount of immobilized enzyme was up to 5 mg g?1 bamboo bar. The optimal pH for both free NP (FNP) and INP was approximately 7.0, and the maximum activity of INP was determined at 60 °C, whereas FNP presented maximum activity at 50 °C. The Km values of INP and FNP were determined as 0.773 and 0.843 mg ml?1, respectively; INP showed a lower Km value and Vmax, than FNP, which demonstrated that INP presented higher affinity to substrate. Compared to FNP, INP showed broader thermal and storage stability under the same trial condition. With respect to cost, INP presented considerable recycling efficiency for up to six consecutive cycles.  相似文献   

7.
The paper reported a green and efficient extraction strategy to lithium isotope separation. A 4-methyl-10-hydroxybenzoquinoline (ROH), hydrophobic ionic liquid—1,3-di(isooctyl)imidazolium hexafluorophosphate ([D(i-C8)IM][PF6]), and hydrophilic ionic liquid—1-butyl-3-methylimidazolium chloride (ILCl) were used as the chelating agent, extraction medium and ionic associated agent. Lithium ion (Li+) first reacted with ROH in strong alkali solution to produce a lithium complex anion. It then associated with IL+ to form the Li(RO)2IL complex, which was rapidly extracted into the organic phase. Factors for effect on the lithium isotope separation were examined. To obtain high extraction efficiency, a saturated ROH in the [D(i-C8)IM][PF6] (0.3 mol l?1), mixed aqueous solution containing 0.3 mol l?1 lithium chloride, 1.6 mol l?1 sodium hydroxide and 0.8 mol l?1 ILCl and 3:1 were selected as the organic phase, aqueous phase and phase ratio (o/a). Under optimized conditions, the single-stage extraction efficiency was found to be 52 %. The saturated lithium concentration in the organic phase was up to 0.15 mol l?1. The free energy change (ΔG), enthalpy change (ΔH) and entropy change (ΔS) of the extraction process were ?0.097 J mol?1, ?14.70 J mol K?1 and ?48.17 J mol?1 K?1, indicating a exothermic process. The partition coefficients of lithium will enhance with decrease of the temperature. Thus, a 25 °C of operating temperature was employed for total lithium isotope separation process. Lithium in Li(RO)2IL was stripped by the sodium chloride of 5 mol l?1 with a phase ratio (o/a) of 4. The lithium isotope exchange reaction in the interface between organic phase and aqueous phase reached the equilibrium within 1 min. The single-stage isotope separation factor of 7Li–6Li was up to 1.023 ± 0.002, indicating that 7Li was concentrated in organic phase and 6Li was concentrated in aqueous phase. All chemical reagents used can be well recycled. The extraction strategy offers green nature, low product cost, high efficiency and good application prospect to lithium isotope separation.  相似文献   

8.
The heat capacities of Ln(Me2dtc)3(C12H8N2) (Ln = La, Pr, Nd, Sm, Me2dtc = dimethyldithiocarbamate) have been measured by the adiabatic method within the temperature range 78–404 K. The temperature dependencies of the heat capacities, C p,m [La(Me2dtc)3(C12H8N2)] = 542.097 + 229.576 X ? 27.169 X 2 + 14.596 X 3 ? 7.135 X 4 (J K?1 mol?1), C p,m [Pr(Me2dtc)3(C12H8N2)] = 500.252 + 314.114 X ? 17.596 X 2 ? 0.131 X 3 + 16.627 X 4 (J K?1 mol?1), C p,m [Nd(Me2dtc)3(C12H8N2)] = 543.586 + 213.876 X ? 68.040 X 2 + 1.173 X 3 + 2.563 X 4 (J K?1 mol?1) and C p,m [Sm(Me2dtc)3(C12H8N2)] = 528.650 + 216.408 X ? 16.492 X 2 + 12.076 X 3 + 4.912 X 4 (J K?1 mol?1), were derived by the least-squares method from the experimental data. The heat capacities of Ce(Me2dtc)3(C12H8N2) and Pm(Me2dtc)3(C12H8N2) at 298.15 K were evaluated to be 617.99 and 610.09 J K?1 mol?1, respectively. Furthermore, the thermodynamic functions (entropy, enthalpy and Gibbs free energy) have been calculated using the obtained experimental heat capacity data.  相似文献   

9.
The treatment of the bacterial arthritis of the joints is still a great challenge for orthopedic surgeons and rheumatologists. Aerobic Gram-negative bacteria are involved only in 20–25 % of cases. The inadequate therapy can cause cartilage destruction and can result in severe osteoarthritis of the affected joint. The aim of this study was to demonstrate and follow the destruction of the joints’ hyaline cartilage by calorimetric method. We induced experimental septic arthritis in knee joints of seven New Zealand rabbits by a single inoculation of Escherichia coli ATCC 25922 culture (0.5 mL cc. 108 ± 5 % c.f.u.). The duration of this experiment was 7 days from the first to the last injection. After euthanizing the first subject, all other animals were given an overdose of anesthetics and samples were isolated from the cartilage of the femurs by surgical intervention for calorimetric measurements. The DSC scans clearly demonstrated the development of infective structural destruction in the cartilage from the first to the tenth day of incubation. In case of healthy control the melting temperatures (T m) were: 57 and 63.1 °C and the total calorimetric enthalpy change (ΔH) was 0.37 J g?1. After the third day, the enthalpy increased extremely (3.67 J g?1), the two transition temperatures shifted toward lower temperature: 47.7 and 62.3 °C. At the fifth day, the effect of infection is culminated with T m = 62.2 °C and a further elevation in ΔH (3.75 J g?1). These results can indicate a dramatic change of the structure of rabbit cartilage between the third and fifth days. Therefore, the time elapsed seems to be critical and possesses clinical relevance, since by the sixth day, ΔH decreased to 2.6 J g?1 with a practically unchanged melting temperature. Between the sixth and tenth days, significantly increased melting temperatures (64.9 °C) were observed with decreased (3.38 J g?1) calorimetric enthalpy. In conclusion, calorimetric measurements have been proven to be a reliable method in the measurement of cartilage destruction, caused by Gram-negative septic arthritis.  相似文献   

10.
Thermal degradation of hydroxypropyl trimethyl ammonium chloride chitosan–Cd complexes (HTCC–Cd) was investigated by thermogravimetric analysis. The results indicate that the degradation of HTCC–Cd in nitrogen atmosphere was two-step reaction. For the first step of degradation, the initial temperature of mass loss (T 0), the final temperature of mass loss (T f), and the temperature of maximum mass loss (T p) increase linearly with the rising of heating rate (B). T o = 1.241B + 220.3, T p = 1.111B + 245.8, and T f = 1.335B + 358.2. Using different methods, the kinetic parameters of the two steps were investigated. The results show that the activation energies of the first step of degradation obtained using Friedman and Flynn–Wall–Ozawa methods are 1.684 × 105 and 1.646 × 105 J mol?1, and the corresponding activation energies for the second step are 1.165 × 105 J mol?1 and 1.373 × 105 kJ mol?1. The results obtained from Phadnis–Deshpande methods indicate that the two degradation processes are both nucleation and growth process, and follow A4 mechanism with intergral form g(X) = [?ln(1 ? X)]4.  相似文献   

11.
Keloid and hypertrophic scarring is a dermal fibroproliferative disorder characterized by increased fibroblast proliferation and excessive production of collagen. Excess scar formation occurs after dermal injury as a result of abnormal wound healing. Keloid formation has been ascribed to altered growth factor regulation, aberrant collagen turnover, genetics, immune dysfunction, sebum reaction, and altered mechanics. No single hypothesis adequately explains keloid formation. The thermal denaturations of pathologic human skin scar tissues were monitored by a SETARAM Micro DSC-II calorimeter. All the experiments were performed between 0 and 100 °C. The heating rate was 0.3 K min?1. DSC scans clearly demonstrated significant differences between the different types and conditions of samples (intact skin: T m = 54.8 °C and ΔH cal = 4.5 J g?1; normal scar: T m = 53.8 °C and ΔH cal = 4.2 J g?1; hypertrophic scar: T m = 54.2 °C and ΔH cal = 2.4 J g?1; keloid: T m = 52.9 °C and ΔH cal = 8.3 J g?1). The heat capacity change between native and denatured states of samples increased with the degree of structural alterations indicating significant water loosing. These observations could be explained with the structural alterations caused by the biochemical processes. With our investigations, we could demonstrate that DSC is a useful and well-applicable method for the investigation of collagen tissue of the human keloid and hypertrophic scar tissues. Our results may be of clinical relevance in the future, i.e., in the diagnosis of the two different pathologic scar formations, or in the choice of the optimal therapy of the disease.  相似文献   

12.
New copper (II) complexes of Schiff bases with 1,2-di(imino-2-aminomethylpyridil)ethane with the general composition CuLX m (H2O) x , [L = Schiff base, X = Cl?, Br?, NO3 ?, ClO4 ?, CH3COO?, m = 2; X = SO4 2?, m = 1] were prepared by template synthesis. The complexes were characterized by elemental analysis, conductivity measurements, magnetic moments, IR, UV–VIS and EPR spectra. The thermal behavior of complexes was studied using thermogravimetry (TG), differential thermal analysis (DTA) and differential scanning calorimetry (DSC). Infrared spectra of all complexes are in good agreement with the coordination of a neutral tetradentate N4 ligand to the cooper (II) through azomethinic and pyridinic nitrogen. Magnetic, EPR and electronic spectral studies show a monomeric distorted octahedral geometry for all Cu(II) complexes. Conductance measurements suggest the non-electrolytic nature of the compounds, except for copper (II) nitrate and perchlorate complexes which are 1:2 electrolytes. Heats of decomposition, ΔH, associated with the exothermal effects were also determined.  相似文献   

13.
Three phase change paraffinic materials (PCMs) were thermophysically (phase-transition temperatures, latent heat, heat capacity at constant pressure, density, and thermal conductivity) investigated in order to be used as latent heat storage media in a pilot plant developed in Plovdiv Bulgaria. Raman structural investigation probes aliphatic character of the E53 sample, while the E46 and ECP samples contain also unsaturated components due to their Raman features within 1,500–1,700 cm?1 range. Orthorhombic structure of the three PCMs was evidenced by the Raman modes at the 1,417 cm?1. The highest latent heat value, ΔH, of phase transitions among the three materials was represented by summation of a solid order–disorder, and melting latent heat was encountered by the E53 paraffin, i.e., 194.32 J g?1 during a μ-DSC scan of 1 °C min?1. Conversely, the ECP composite containing ceresin component shows the lowest latent heat value of 143.89 J g?1 and the highest thermal conductivity of 0.46 W m?1 K?1 among the three phase change materials (PCMs). More facile melt-disordered solid transition with the activation energy of 525.45 kJ mol?1 than the lower temperature transition of disorder–order (E a of 631.73 kJ mol?1) during the two-step process of solidification for the E53 melt are discussed in terms of structural and molecular motion changes.  相似文献   

14.
The immersion enthalpies in benzene, cyclohexane, water, and phenol aqueous solution with a concentration of 100 mg L?1 are determined for eight activated carbons obtained from peach seeds (Prunus persica) by thermal activation with CO2 at different temperatures and times of activation. The results obtained for the immersion enthalpy show values between ?4.0 and ?63.9 J g?1 for benzene, ?3.0 and ?47.9 J g?1 for cyclohexane, ?10.1 and ?43.6 J g?1 for water, and ?11.1 and ?45.8 J g?1 for phenol solution. From nitrogen adsorption isotherms, the surface area, micropore volume, and average pore diameter of the activated carbons were obtained. These parameters are related with the immersion enthalpies, and the obtained trends are directly proportional with two first parameters in the nonpolar solvents, which is a behavior of microporous activated carbons with hydrophobic character. Phenol adsorption from aqueous solution on activated carbons is proportional to their surface area and their immersion enthalpy in the solution.  相似文献   

15.
The ability of ordered mesoporous carbon CMK-3 has been explored for the removal and recovery of uraium from aqueous solutions. The textural properties of CMK-3 were characterized using small-angle X-ray diffraction and N2 adsorption–desorption, and the BET specific surface area, pore volume and the pore size were 1143.7 m2/g, 1.10 cm3/g and 3.4 nm. The influences of different experimental parameters such as solution pH, initial concentration, contact time, ionic strength and temperature on adsorption were investigated. The CMK-3 showed the highest uranium sorption capacity at initial pH of 6.0 and contact time of 35 min. Adsorption kinetics was better described by the pseudo-second-order model and adsorption process could be well defined by the Langmuir and Freundlich isotherm. The thermodynamic parameters, ?(298 K), ? and ? were determined to be ?7.7, 21.5 k J mol?1 and 98.2 J mol?1 K?1, respectively, which demonstrated the sorption process of CMK-3 towards U(VI) was feasible, spontaneous and endothermic in nature. The adsorbed CMK-3 could be effectively regenerated by 0.05 mol/L HCl solution for the removal and recovery of U(VI). Complete removal (99.9 %) of U(VI) from 1.0 L industry wastewater containing 15.0 mg U(VI) ions was possible with 2.0 g CMK-3.  相似文献   

16.
The heat capacities of 1-butyl-3-methylimidazolium lactate ionic liquids ([C4mim][Lact]) were measured with a highly accurate automatic adiabatic calorimeter over the temperature range from 79 to 406 K. And the experimental values of molar heat capacities were fitted to a polynomial equation using least square method in the appropriate temperature ranges. The standard molar heat capacity was determined to be 1734.46?±?5.12 J K?1 mol?1 at 298.15 K. The molar enthalpy and molar entropy of the transition were determined to be 15.575?±?0.045 and 64.44?±?0.14 J K?1 mol?1. Other thermodynamic properties, such as (HT???H298.15) and (ST???S298.15), were also calculated. Furthermore, when the temperature reaches 241.87 K, the strongest peaks appeared by analysis of the heat capacity curve. This phenomenon could be explained from the interionic interaction, which is the hydrogen bond between the anions and cations.  相似文献   

17.
The reduction reaction of the Cu(II)–pitn complex (pitn = 1,3-di(pyridine-2-carboxaldimino)propane) by decamethylferrocene [Fe(Cp*)2] was examined in acetonitrile. The observed pseudo-first-order rate constants exhibited saturation kinetics with increasing excess amount of [Fe(Cp*)2]. Detailed analyses revealed that the reaction is controlled by a structural change prior to the electron transfer step, rather than a conventional bimolecular electron transfer process preceded by ion pair (encounter complex) formation. The rate constant for the structural change was estimated to be 275 ± 13 s?1 at 298 K (?H* = 33.3 ± 1.0 kJ·mol?1, ?S* = 86 ± 5 J·mol?1·K?1), which is the fastest among gated reactions involving CuN4 complexes. It was confirmed by EPR measurement and Conflex calculations that the dihedral angle between the two N–N planes is significantly large (40°) in solution whereas it is merely 17.14° in the crystal.  相似文献   

18.
Form-stable phase change materials (PCMs) with high thermal conductivity are essential for thermal energy storage systems, which in turn are indispensible in solar thermal energy applications and efficient use of energy. In this paper, a new palmitic acid (PA)/polyaniline (PANI) form-stable PCMs were prepared by surface polymerization. The highest loading of PA in the form-stable PCMs was 80 mass% with the phase change enthalpy (ΔH melting) of 175 J g?1. Copper nanowires (Cu NWs) were introduced to the form-stable PCM by mixing the Cu NWs with PA and ethanol prior to the emulsifying of PA in surfactant solution. The Cu NWs would remain intact in case the ethanol was eliminated before the PA/Cu NWs mixture was mixed with surfactant solution. Otherwise, the Cu NWs would be partially oxidized under the attack of ethanol and ammonium persulfate. The ΔH melting of the form-stable PCMs containing Cu NWs decreased linearly with the increasing of Cu NWs loading. The ΔH melting of the form-stable PCMs doped with 11.2 mass% Cu NWs was 149 J g?1. The thermal conductivity of the form-stable PCMs could be effectively improved by Cu NWs. By adding 11.2 mass% Cu NWs, the thermal conductivity of the form-stable PCM could attain 0.455 W m?1 K?1.  相似文献   

19.
The samples from kaolin Sedlec were investigated by the help of DTA, TG, and temperature dependences of DC conductivity using Pt wire electrodes and linear heating up to 1,050 °C. After drying, the samples contained ~1.5 mass% of the physically bound water. DTA and TG reflected generally known facts about a release of the physically bound water, dehydroxylation, and metakaolinite → Si–Al spinel transformation. The results of electrical measurements showed the electric current passed over the maximum at 60 °C. The self-ionization of water results in the process H2O → H+ + OH? in the water layers on the crystal surfaces; consequently, OH? and H+ are the main charge carriers in the low-temperature region. The water molecules simultaneously evaporate from the sample which decreases the number of the charge carriers. When the physically bound water evaporates, the current is carried mostly by K+ and Na+ ions. During dehydroxylation, the hydroxyls OH? split into H+ and O2?. The ions H+ jump to the neighboring OH? groups creating the water molecules. The ions O2?remain bounded to the newly created metakaolinite lattice. Therefore, mobile protons contribute to the electric current. At the same time, this contribution gradually decreases because of the escape of H2O from the sample. The sharp current peak and DTA peak at 970 °C imply relatively fast metakaolinite → Si–Al spinel transformation. This DC current peak results from the shift of Al3+ and O2? ions into new positions.  相似文献   

20.
A new crystalline complex (C8H17NH3)2CuCl4(s) (abbreviated as C8Cu(s)) was synthesized by liquid phase reaction. Chemical analysis, elemental analysis, and X-ray crystallography were applied to characterize the composition and crystal structure of the complex. Low-temperature heat capacities of the complex were measured by a precision automatic adiabatic calorimeter over the temperatures ranging from 78 to 395 K, and two solid–solid phase changes appeared in the heat capacity curve. The temperatures, molar enthalpies and entropies of the two phase transitions of the complex were determined to be: T trs, 1 = 309.4 ± 0.35 K, Δtrs H m, 1 = 16.55 ± 0.41 kJ mol?1, and Δtrs S m, 1 = 53.49 ± 1.3 J K?1 mol?1 for the first peak; T trs, 2 = 338.5 ± 0.63 K, Δtrs H m, 2 = 6.500 ± 0.10 kJ mol?1, and Δtrs S m, 2 = 19.20 ± 0.28 J K?1 mol?1 for the second peak. Two polynomial equations of the heat capacities as a function of the temperature were fitted by least-square method. Smoothed heat capacities and thermodynamic functions of the complex relative to the standard reference temperature of 298.15 K were calculated based on the fitted polynomial equations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号