首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Flash vacuum pyrolysis (fvp) reactions of NH-pyrazole (1) and 3,5-diphenylpyrazole (2) were investigated in the presence of anionic clays having hydrotalcite structure (HT). Solid catalysts with Mg:Al ratio equal to 2:1 containing carbonate (HT-1), nitrate (HT-2), and silicate (HT-3) as interlayer anions were employed. Between 400 and 600 degrees C, compound 1 remained almost unchanged and only unidentified volatile products were detected in small amounts. In contrast, 2 afforded benzonitrile (3) and phenylacetonitrile (4) by a ring fragmentation reaction at 450 degrees C. At a higher temperature (660 degrees C), the same products obtained in homogeneous fvp reactions, i.e., 2-phenylindene (5) and 3-phenylindene (6), were obtained showing no catalysis by HT under these conditions. Results showed that the yield is strongly dependent on the nature of the interlayer anion in the hydrotalcite structure. In comparison with reactions of 2 over zeolites, HTs exhibit selectivity for ring fragmentation reaction.  相似文献   

2.
The greatest advantage of heterogeneous catalysis is the ease of separation, while the disadvantages are often limited activity and selectivity. We report solvents that use tunable phase behavior to achieve homogeneous catalysis with ease of separation. Tunable solvents are homogeneous mixtures of water or polyethylene glycol with organics such as acetonitrile, dioxane, and THF that can be used for homogeneously catalyzed reactions. Modest pressures of a soluble gas, generally CO?, achieve facile post-reaction heterogeneous separation of products from the catalyst. Examples shown here are rhodium-catalyzed hydroformylation of 1-octene and p-methylstyrene and palladium catalyzed C-O coupling to produce o-tolyl-3,5-xylyl ether and 3,5-di-tert-butylphenol. Both were successfully carried out in homogeneous tunable solvents followed by separation efficiencies of up to 99% with CO? pressures of 3 MPa. Further examples in tunable solvents are enzyme catalyzed reactions such as kinetic resolution of rac-1-phenylethyl acetate and hydrolysis of 2-phenylethyl acetate (2PEA) to 2-phenylethanol (2PE). Another tunable solvent is nearcritical water (NCW), whose unique properties offer advantages for developing sustainable alternatives to traditional processes. Some examples discussed are Friedel-Crafts alkylation and acylation, hydrolysis of benzoate esters, and water-catalyzed deprotection of N-Boc-protected amine compounds.  相似文献   

3.
The 3,5-di-tert-butylpyrazolato (3,5-tBu(2)pz) derivatives of aluminum [(eta(1),eta(1)-3,5-tBu(2)pz)(mu-Al)R(1)R(2)](2) (R(1) = R(2) = Me 1; R(1) = R(2) = Et, 2; R(1) = R(2) = Cl, 3; R(1) = R(2) = I, 4; [(eta(2)-3,5-tBu(2)pz)(3)Al], 5; [Al(2)(eta(1),eta(1)-3,5-tBu(2)pz)(2)(mu-E)(C triple bond CPh)(2)] (E = S (6), Se (7), Te (8)) have been prepared in good yield. Compounds 1 and 2 were obtained by the reactions of H[3,5-tBu(2)pz] with Me(3)Al and Et(3)Al, respectively. Reaction of [(eta(1),eta(1)-3,5-tBu(2)pz)(mu-Al)H(2)](2) with the pyrazole H[3,5-tBu(2)pz] gave [(eta(2)-3,5-tBu(2)pz)(3)Al] (5). The reaction of [(eta(1),eta(1)-3,5-tBu(2)pz)(mu-Al)R(2)](2) (R = H, Me) and I(2) yielded 4, while the reaction of 1 equiv of K[3,5-tBu(2)pz] and AlCl(3) afforded 3. In addition, the reaction of [Al(2)(eta(1),eta(1)-3,5-tBu(2)pz)(2)(mu-E)H(2)] and HC triple bond CPh gave 6, 7, and 8. All compounds have been characterized by elemental analysis, NMR, and mass spectroscopy. The molecular structure analyses of compounds 1, 3, 6, and 7 by X-ray crystallography showed that complexes 1 and 3 are dimeric with two eta(1),eta(1)-pyrazolato groups in twisted conformation while 6 and 7 with two eta(1),eta(1)-pyrazolato groups display a boat conformation.  相似文献   

4.
Homogeneous and heterogeneous flash vacuum pyrolysis (fvp) reactions of 2-(1H-1,2,3-benzotriazol-1-yl)phenylethanone (1) are reported. Heterogeneous reactions were carried out with Al-MCM-41 catalysts, mesoporous molecular sieves of the type M41S. In both cases, 7H-dibenzo[b,d]azepin-7-one (4) was the major product; however, in the catalytic reactions, yields and selectivity were very high. A mechanism for this reaction is also discussed.  相似文献   

5.
Carbophosphazene-based coordination ligands [{NC(NMe(2))}(2){NP(3,5-Me(2)Pz)(2)}] (1), [{NC(NEt)(2)}{NC(3,5-Me(2)Pz)}{NP(3,5-Me(2)Pz)(2)}] (2), [NC(3,5-Me(2)Pz)](2)[NP(3,5-Me(2)Pz)(2)] (3), [{NCCl}(2){NP(NC(NMe(2))(2))(2)}] (4), and [{NC(p-OC(5)H(4)N)}(2){NP(NC(NMe(2))(2))(2)}] (5) were synthesized and structurally characterized. In these compounds, the six-membered C(2)N(3)P ring is perfectly planar. The reaction of 1 with CuCl(2) afforded [{NC(NMe(2))}(2){NHP(O)(3,5-Me(2)Pz)}·{Cu(3,5-Me(2)PzH)(2)(Cl)}][Cl] (6). The ligand binds to Cu(II) utilizing the geminal [P(O)(3,5-Me(2)Pz)] coordinating unit. Similarly, the reaction of 2 with PdCl(2) afforded, after a metal-assisted P-N hydrolysis, [{NC(NEt)(2)}{NC(3,5-Me(2)Pz)}{NP(O)(3,5-Me(2)Pz)}·{Pd(3,5-Me(2)PzH)(Cl)}] (7). In the latter, the [P(O)(3,5-Me(2)Pz)] unit does not coordinate; in this instance, the Pd(II) is bound by a ring nitrogen atom and a carbon-tethered pyrazolyl nitrogen atom. The reaction of 3 with PdCl(2) also results in P-N bond hydrolysis affording [{NC(3,5-Me(2)Pz)(2)}{NP(O)(3,5-Me(2)Pz)}{Pd(Cl)}] (8). In contrast to 7, however, in 8, the Pd(II) elicits a nongeminal η(3) coordination from the ligand involving two carbon-tethered pyrazolyl groups and a ring nitrogen atom. Metalated products could not be isolated in the reaction of 3 with K(2)PtCl(4). Instead, a P-O-P bridged carbodiphosphazane dimer, [{NC(3,5-Me(2)Pz)NHC(3,5-Me(2)Pz)}{NP(O)}](2) (9), was isolated as the major product. Finally, the reaction of 5 with PdCl(2) resulted in [{NC(OC(5)H(4)N)}(2){NP(NC(NMe(2))(2))(2)}·{PdCl(2)}] (10). In the latter, the exocyclic P-N bonds are quite robust and are involved in binding to the metal ion. Compounds 6-10 have been characterized by a variety of techniques including X-ray crystallography. In all of the compounds, the bond parameters of the inorganic heterocyclic rings are affected by metalation.  相似文献   

6.
A series of mononuclear boron halides of the type LBX(2) [LH = N-phenyl-3,5-di-tert-butylsalicylaldimine, X = Cl (2), Br (3)] and LBX [LH2 = N-(2-hydroxyphenyl)-3,5-di-tert-butylsalicylaldimine, X = Cl (7), Br (8); LH2 = N-(2-hydroxyethyl)-3,5-di-tert-butylsalicylaldimine, X = Cl (9), Br (10); and LH2 = N-(3-hydroxypropyl)-3,5-di-tert-butylsalicylaldimine, X = Cl (11), Br (12)] were synthesized from their borate precursors LB(OMe)2 (1) (LH = N-phenyl-3,5-di-tert-butylsalicylaldimine) and LB(OMe) [LH2 = N-(2-hydroxyphenyl)-3,5-di-tert-butylsalicylaldimine (4), N-(2-hydroxyethyl)-3,5-di-tert-butylsalicylaldimine (5), N-(3-hydroxypropyl)-3,5-di-tert-butylsalicylaldimine (6)]. The boron halide compounds were air and moisture sensitive, and upon hydrolysis, compound 7 resulted in the oxo-bridged compound 13 that contained two seven-membered boron heterocycles. The boron halide compounds dealkylated trimethyl phosphate in stoichiometric reactions to produce methyl halide and unidentified phosphate materials. Compounds 8 and 12 were found to be the most effective dealkylating agents. On reaction with tert-butyl diphenyl phosphinate, compound 8 produced a unique boron phosphinate compound LB(O)OPPh2 (14) containing a terminal phosphinate group. Compounds 1-14 were characterized by 1H, 13C, 11B, 31P NMR, IR, MS, EA, and MP. Compounds 5, 6, and 11-14 also were characterized by single-crystal X-ray diffraction.  相似文献   

7.
The leaves of Barringtonia asiatica afforded two new triterpenes, germanicol caffeoyl ester (1) and camelliagenone (2). Their structures were elucidated by extensive 1D- and 2D-NMR spectroscopy. It also afforded germanicol trans-coumaroyl ester (3), germanicol cis-coumaroyl ester (4), germanicol (5), camelliagenin A (6), spinasterol, sitosterol, squalene, lutein and trilinolein. Compounds 3, spinasterol and trilinolein were isolated from the fruits, while the seeds yielded spinasterol, squalene, linoleic acid and trilinolein. Compounds 1-5 exhibited antifungal activity against Candida albicans, 1-3 and 5 showed antibacterial activity against Staphylococcus aureus, while 5 is active against Pseudomonas aeruginosa.  相似文献   

8.
The molybdenum oxo-imido complex, [Mo(O)(NtBu)Cl2(dme)] (1), was obtained from the reaction between [MoO2Cl2(dme)] and [Mo(NtBu)2Cl2(dme)]. Reactions between [Mo(O)(NR)Cl2(dme)] (where R = tBu or 2,6-iPr2C6H3) and the disodium Schiff base compounds Na(2)(3,5-tBu2)2salen, Na(2)(3,5-tBu2)2salpen, and Na(2)(7-Me)2salen afforded the first oxo-imido transition metal Schiff base complexes: [Mo(O)(NtBu)[(3,5-tBu2)2salen]] (2), [Mo(O)(NtBu)[(3,5-tBu2)2salpen]] (3), and [Mo(O)(N-2,6-iPr2C6H3)[(7-Me)2salen]] (4), respectively. The compounds [Mo(NtBu)2[(3,5-tBu2)2salpen]] (5) from [Mo(NtBu)2(NHtBu)2] and [Mo(N-2,6-iPr2C6H3)(2)[(7-Me)2salen]](6) from [Mo(N-2,6-iPr2C6H3)(2)(NHtBu)2] (7) are also reported. Compounds 1-7 were characterized by NMR, IR, and FAB mass spectroscopy while compounds 3, 4, and 5 were additionally characterized by X-ray crystallography. In conjunction with tBuOOH as oxidant, compound 3 is a catalyst for the oxidation of benzyl alcohol to benzaldehyde and cis-cyclooctene and 1-octene to the corresponding epoxides.  相似文献   

9.
The heterogeneous acid‐catalyzed activation step of alkanes leading to the reaction intermediates (carbocationic or alkoxy species) was up to now the matter of a longstanding controversy. Gas chromatography and online mass spectroscopy measurements show that H2 and methane are formed over H‐zeolites, whereas HD and CH3D are formed over D‐zeolites as the primary products in the reaction with isobutane. These results indicate that σ‐bond protolysis by strong acid sites is the first step for hydrocarbon activation on these catalysts at mild temperatures (473 K), in analogy to the activation path occurring in liquid superacid media.  相似文献   

10.
The title keten (1) was treated with some alcohols and amines: methanol afforded an inseparable mixture of two products, 4H-4-methoxycarbonyl-docosafluoro-3,5-dimethyl-3-ethylheptane (2) and 4-methoxycarbonyl-heneicosafluoro-3,5-dimethyl-8-ethylhept-3-ene (3). Treatment of the mixture with sodium hydroxide afforded pure (3). Reaction of (1) with benzyl alcohol yielded 4-benzyloxycarbonyl-4H-docosafluoro-3,5-dimethyl-3-ethylheptane (4) which on hydrogenation gave a mixture of 4H-heneicosafluoro-3,5-dimethyl-5-ethylhept-3-ene (5) and 4H-docosafluoro-3,5-dimethyl-3-ethyl-heptane-4-carboxylic acid (6). Reaction of (1) with ammonia yielded 4-carbonamido-heneicosafluoro-3,5-dimethyl-5-ethylhept-3-ene (7) and dimethylamine similarly afforded the N,N-dimethyl analogue (9). However, reaction of (1) with ethylamine gave an unusual cyclisation product, 1-ethyl-3H-heneicosafluoro-4-ethyl-4-methyl-3(1-ethyl-1-methylpropyl)azetan-2-one (8).  相似文献   

11.
Diruthenium compounds containing one omega-alkene-alpha-carboxylate ligand, Ru2Cl(D(3,5-Cl2Ph)F)3(O2C(CH2)nCH=CH2) (n=1 (1a) and 2 (1b)), were prepared from the reaction between Ru2Cl(D(3,5-Cl2Ph)F)3(O2CCH3) (D(3,5-Cl2Ph)F=N,N'-bis(3,5-dicholorophenyl)formamidinate) and the corresponding omega-alkene-alpha-carboxylic acid. Compounds 1a and 1b both underwent olefin cross metathesis reactions catalyzed by (Cy3P)2Cl2Ru(=CHPh) to afford the dimerized compounds [Ru2Cl(D(3,5-Cl2Ph)F)3]2(mu-O2C(CH2)nCH=CH(CH2)nCO2) (n=1 (2a) and 2 (2b)). Similarly, diruthenium compounds containing two omega-alkene-alpha-carboxylate ligands, cis-Ru2Cl(D(3,5-Cl2Ph)F)2(O2C(CH2)nCH=CH2)2 (n=1 (3a), 2 (3b), and 3 (3c)), were prepared by substituting the acetate ligands in cis-Ru2Cl(D(3,5-Cl2Ph)F)2(O2CCH3)2 with the corresponding omega-alkene-alpha-carboxylate ligands. Compounds 3 exhibited different reactivity under olefin metathesis conditions: both 3b and 3c underwent the intramolecular ring closing reaction quantitatively to afford compounds cis-Ru2(D(3,5-Cl2Ph)F)2(mu-O2C(CH2)nCH=CH2(CH2)nCO2)Cl with n=2 (4b) and 3 (4c), respectively, but 3a displayed no metathesis reactivity. Molecular structures of compounds 1a/1b, 2a/2b, 3a/3b, and 4b were established via X-ray diffraction studies, confirming the formation of cross and ring closing metathesis products. Voltammograms of compounds 2 are nearly identical to those of compounds 1, indicating the absence of electronic interactions mediated by the tether derived from olefin metathesis.  相似文献   

12.
Microbial metabolism of the cancer chemopreventive agent, curcumin [(1E,6E)-1,7-bis(4-hydroxy-3-methoxyphenyl)hepta-1,6-diene-3,5-dione] (1) with Pichia anomala (ATCC 20170) yielded four major metabolites, 5-hydroxy-1,7-bis(4-hydroxy-3-methoxyphenyl)heptan-3-one (2), 5-hydroxy-7-(4-hydroxy-3-methoxyphenyl)-1-(4-hydroxyphenyl)heptan-3-one (3), 1,7-bis(4-hydroxy-3-methoxyphenyl)heptan-3,5-diol (4), 5-hydroxy-1,7-bis(4-hydroxyphenyl)heptane-3-one (5) and two minor products, 1-(4-hydroxy-3-methoxyphenyl)-7-(4-hydroxyphenyl)heptane-3,5-diol (6) and 1,7-bis(4-hydroxyphenyl)heptane-3,5-diol (7). The structures of compounds 2-5 were established on the basis of spectroscopic data. Compounds 6 and 7 were assigned tentative structures.  相似文献   

13.
Previously, the synthesis of compounds Ru(2)(D(3,5-Cl(2)Ph)F)(4-n)(O(2)CFc)(n)Cl (n = 1, 3a; 2, 4a), where D(3,5-Cl(2)Ph)F is N,N'-di(3,5-dichlorophenyl)formamidinate, from the carboxylate exchange reactions between Ru(2)(D(3,5-Cl(2)Ph)F)(4-n)(OAc)(n)Cl and ferrocene carboxylic acid was communicated. Reported herein is the preparation of analogous compounds Ru(2)(DmAniF)(4-n)(O(2)CFc)(n)Cl (n = 1, 3b; 2, 4b), where DmAniF is N,N'-di(3-methoxyphenyl)formamidinate, from Ru(2)(DmAniF)(4-n)(OAc)(n)Cl. Compounds 3 and 4 were characterized with various techniques including X-ray structural determinations of 3a and 4a. Voltammetric behaviors of compounds 3 and 4 were investigated, and stepwise one-electron ferrocene oxidations were observed for both compounds 4a and 4b. Spectral analysis of the monocations [4](+) indicated that they are the Robin-Day class II mixed valent [Fc···Fc](+) species. Measurement and fitting of magnetic data (χT) of 4a between 2 and 300 K revealed a typical zero-field splitting of a S = 3/2 center with D = 77 cm(-1), while those of [4a]BF(4) are consistent with the presence of S = 3/2 (Ru(2)) and S = 1/2 (Fc(+)) centers that are weakly coupled (zJ = -0.76 cm(-1)).  相似文献   

14.
Diruthenium azido complexes Ru(2)(DPhF)(4)N(3) (1a, DPhF = N,N'-diphenylformamidinate) and Ru(2)(D(3,5-Cl(2))PhF)(4)N(3) (1b, D(3,5-Cl(2))PhF = N,N'-bis(3,5-dichlorophenyl)formamidinate) have been investigated by thermolytic and photolytic experiments to investigate the chemical reactivity of the corresponding diruthenium nitride species. Thermolysis of 1b at ~100 °C leads to the expulsion of N(2) and isolation of Ru(2)(D(3,5-Cl(2))PhF)(3)NH(C(13)H(6)N(2)Cl(4)) (3b), in which a nitrogen atom has been inserted into one of the proximal aryl C-H bonds of a D(3,5-Cl(2))PhF ligand. A similar C-H insertion product is obtained upon thawing a frozen CH(2)Cl(2) solution of the nitride complex Ru(2)(DPhF)(4)N (2a), formed via photolysis at -196 °C of 1a to yield Ru(2)(DPhF)(3)NH(C(13)H(10)N(2)) (3a). Evidence is provided here that both reactions proceed via direct intramolecular attack of an electrophilic terminal nitrido nitrogen atom on a proximal aryl ring. Thermodynamic and kinetic data for this reaction are obtained from differential scanning calorimetric measurements and thermal gravimetric analysis of the thermolysis of Ru(2)(D(3,5-Cl(2))PhF)(4)N(3), and by Arrhenius/Eyring analysis of the conversion of Ru(2)(DPhF)(4)N to its C-H insertion product, respectively. These data are used to develop a detailed, experimentally validated DFT reaction pathway for N(2) extrusion and C-H functionalization from Ru(2)(D(3,5-Cl(2))PhF)(4)N(3). The diruthenium nitrido complex is an intermediate in the calculated reaction pathway, and the C-H functionalization event shares a close resemblance to a classical electrophilic aromatic substitution mechanism.  相似文献   

15.
Lee C  Lee J  Lee SW  Kang SO  Ko J 《Inorganic chemistry》2002,41(12):3084-3090
The 1,2-bis(chlorogermyl)- (1) and 1,2-bis(bromostannyl)carborane (2) have been prepared by the reaction of dilithio-o-carborane with Me(2)GeCl(2) and Me(2)SnBr(2), respectively. Compounds 1 and 2 are found to be good precursors for the synthesis of a variety of cyclization compounds. The Wurtz-type coupling reaction of 1 and 2 using sodium metal afforded the four-membered digerma compound 3 and five-membered tristanna compound 4, respectively. The salt elimination reactions of 1 and 2 using Li(2)N(t)Bu and Li(2)PC(6)H(5) afforded the cyclic products [structure: see text]. The 1,2-bis(dimethylgermyl)carborane 9 and 1,2-bis(dimethylstannyl)carborane 10 were prepared by the reaction of 1 and 2 with sodium cyanoborohydride. The reactions of 9 and 10 with Pd(PPh(3))(4) afforded the bis(germyl)palladium 12 and bis(stannyl)palladium 13 complexes, respectively.  相似文献   

16.
Reaction of some α-phthalimidoacetamides 1a-i with sodium ethoxide was carried out under drastic conditions. Compounds 1b-g afforded 4-hydroxy-1(2H)-isoquinolone-3-carboxamides 2b-g , while 1h-i afforded the acid 3a-b together with the expected isoquinolones 2h-i. Compound 1a gave phthalimide as the major product. Compounds 2 are acidic and unstable in basic media. The most acidic compounds presented the longest half-life. An explanation of these results was given.  相似文献   

17.
Density functional theory calculations were carried out to investigate the reaction mechanism of selective catalytic reduction of nitrogen oxides by ammonia in the presence of oxygen at the Br?nsted acid sites of H-form zeolites. The Br?nsted acid site of H-form zeolites was modeled by an aluminosilicate cluster containing five tetrahedral (Al, Si) atoms. A low-activation-energy pathway for the catalytic reduction of NO was proposed. It consists of two successive stages: first NH(2)NO is formed in gas phase, and then is decomposed into N(2) and H(2)O over H-form zeolites. In the first stage, the formation of NH(2)NO may occur via two routes: (1) NO is directly oxidized by O(2) to NO(2), and then NO(2) combines with NO to form N(2)O(3), which reacts with NH(3) to produce NH(2)NO; (2) when NO(2) exceeds NO in the content, NO(2) associates with itself to form N(2)O(4), and then N(2)O(4) reacts with NH(3) to produce NH(2)NO. The second stage was suggested to proceed with low activation energy via a series of synergic proton transfer steps catalyzed by H-form zeolites. The rate-determining step for the whole reduction of NO(x) is identified as the oxidation of NO to NO(2) with an activation barrier of 15.6 kcal mol(-1). This mechanism was found to account for many known experimental facts related to selective catalytic reduction of nitrogen oxides by ammonia over H-form zeolites.  相似文献   

18.
The major hexamer oligomer of tetrafluoroethene [perfluoro-2-(1-ethyl-1-methylpropyl)-3-methyl-pent-1-ene] (1) reacted with sodium hydroxide under vigorous conditions to afford perfluoro-[(1-ethyl-1-methylpropyl) (1-methylpropyl)]keten (3). Reaction of (1) with methoxide ion in methanol afforded 4-methoxycarbonyl-heneicosafluoro-3,5-dimethyl-5-ethyl-hept-3-ene (5) whereas reaction with methanol In the presence of triethylamine initially afforded (5), but on further reaction yielded (E, Z)-4H-heneicosafluoro-3,5-dimethyl-5-ethylhept-3-ene (4). Reaction of (1) with potassium-t-butoxide in t-butanol afforded (3) whilst with water/triethylamine (4) was obtained. With ethanethiol and sodium benzylthiolate, respectively, hexamer (1) gave ethyl and benzyl [tricosafluoro-3-ethyl-3-methyl-2-(1-methylpropyl)pent-1-enyl]sulphides (6) and (7). With aqueous potassium cyanide 1-cyanotricosafluoro-3-ethyl-3-methyl-2-(1-methylpropyl)pent-1-ene (8) was obtained.  相似文献   

19.
The reaction of 4-ethynyl-2,6-lutidine, (2,6-Me(2))(4-HC≡C)C(5)H(2)N (2), with B(C(6)F(5))(3) afforded the zwitterion [(2,6-Me(2))(4-(C(6)F(5))(3)BC≡C)C(5)H(2)NH] (3) via a deprotonation pathway. By treatment of 2 with the group 13 trialkyls AlMe(3), AlEt(3), GaMe(3), GaEt(3) and InMe(3), metallation of the ethynyl group afforded compounds 4-8 under extrusion of the corresponding alkane. The resulting products were characterised by elemental analyses and NMR spectroscopy. Compounds 4 and 8 were crystallized from THF and were yielded as monomers with coordinated THF molecules. The gallium compound 7 could be crystallised from benzene and was afforded as coordination polymer. The structures of these three compounds (4·THF, 7 and 8·2THF) were determined by single-crystal X-ray diffraction experiments. The aluminium compounds 4 and 5 show redistribution reaction of their substituents.  相似文献   

20.
Two series of heavy alkaline earth metal pyrazolates, [M(Ph(2)pz)(2)(thf)(4)] 1 a-c (Ph(2)pz=3,5-diphenylpyrazolate, M=Ca, Sr, Ba; THF=tetrahydrofuran) and [M(Ph(2)pz)(2)(dme)(n)] (M=Ca, 2 a, Sr, 2 b, n=2; M=Ba, 2 c, n=3; DME=1,2-dimethoxyethane) have been prepared by redox transmetallation/ligand exchange utilizing Hg(C(6)F(5))(2). Compounds 1 a and 2 b were also obtained by redox transmetallation with Tl(Ph(2)pz). Alternatively, direct reaction of the alkaline earth metals with 3,5-diphenylpyrazole at elevated temperatures under solventless conditions yielded compounds 1 a-c and 2 a-c upon extraction with THF or DME. By contrast, [M(Me(2)pz)(2)(Me(2)pzH)(4)] 3 a-c (M=Ca, Sr, Ba; Me(2)pzH=3,5-dimethylpyrazole) were prepared by protolysis of [M[N(SiMe(3))(2)](2)(thf)(2)] (M=Ca, Sr, Ba) with Me(2)pzH in THF and by direct metallation with Me(2)pzH in liquid NH(3)/THF. Compounds 1 a-c and 2 a-c display eta(2)-bonded pyrazolate ligands, while 3 a,b exhibit eta(1)-coordination. Complexes 1 a-c have transoid Ph(2)pz ligands and an overall coordination number of eight with a switch from mutually coplanar Ph(2)pz ligands in 1 a,b to perpendicular in 1 c. In eight coordinate 2 a,b the pyrazolate ligands are cisoid, whilst 2 c has an additional DME ligand and a metal coordination number of ten. By contrast, 3 a,b have octahedral geometry with four eta(1)-Me(2)pzH donors, which are hydrogen-bonded to the uncoordinated nitrogen atoms of the two trans Me(2)pz ligands. The application of synthetic routes initially developed for the preparation of lanthanoid pyrazolates provides detailed insight into the similarities and differences between the two groups of metals and structures of their complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号