首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An operator norm estimate of the difference between the Kac operator and the Schrödinger semigroup is proved and used to give a variant of the Trotter product formula for Schrödinger operators in theL p operator norm. This extends Helffer’s result in theL 2 operator norm to the case in theL p operator norm for more general scalar potentials and with vector potentials. The method of the proof is probabilistic based on the Feynman—Kac and Feynman—Kac—Itô formula.  相似文献   

2.
廖翠萃  崔金超  梁久祯  丁效华 《中国物理 B》2016,25(1):10205-010205
In this paper, we propose a variational integrator for nonlinear Schrdinger equations with variable coefficients. It is shown that our variational integrator is naturally multi-symplectic. The discrete multi-symplectic structure of the integrator is presented by a multi-symplectic form formula that can be derived from the discrete Lagrangian boundary function. As two examples of nonlinear Schrdinger equations with variable coefficients, cubic nonlinear Schrdinger equations and Gross–Pitaevskii equations are extensively studied by the proposed integrator. Our numerical simulations demonstrate that the integrator is capable of preserving the mass, momentum, and energy conservation during time evolutions. Convergence tests are presented to verify that our integrator has second-order accuracy both in time and space.  相似文献   

3.
A generalized Schrödinger equation containing correction terms to classical kinetic energy, has been derived in the complex vector space by considering an extended particle structure in stochastic electrodynamics with spin. The correction terms are obtained by considering the internal complex structure of the particle which is a consequence of stochastic average of particle oscillations in the zeropoint field. Hence, the generalised Schrödinger equation may be called stochastic Schrödinger equation. It is found that the second order correction terms are similar to corresponding relativistic corrections. When higher order correction terms are neglected, the stochastic Schrödinger equation reduces to normal Schrödinger equation. It is found that the Schrödinger equation contains an internal structure in disguise and that can be revealed in the form of internal kinetic energy. The internal kinetic energy is found to be equal to the quantum potential obtained in the Madelung fluid theory or Bohm statistical theory. In the rest frame of the particle, the stochastic Schrödinger equation reduces to a Dirac type equation and its Lorentz boost gives the Dirac equation. Finally, the relativistic Klein–Gordon equation is derived by squaring the stochastic Schrödinger equation. The theory elucidates a logical understanding of classical approach to quantum mechanical foundations.  相似文献   

4.
A formal but not conventional equivalence between stochastic processes in nonequilibrium statistical thermodynamics and Schrödinger dynamics in quantum mechanics is shown. It is found, for each stochastic process described by a stochastic differential equation of Itô type, there exists a Schrödinger-like dynamics in which the absolute square of a wavefunction gives us the same probability distribution as the original stochastic process. In utilizing this equivalence between them, that is, rewriting the stochastic differential equation by an equivalent Schrödinger equation, it is possible to obtain the notion of deterministic limit of the stochastic process as a semi-classical limit of the “Schrödinger” equation. The deterministic limit thus obtained improves the conventional deterministic approximation in the sense of Onsager-Machlup. The present approach is valid for a general class of stochastic equations where local drifts and diffusion coefficients depend on the position. Two concrete examples are given. It should be noticed that the approach in the present form has nothing to do with the conventional one where only a formal similarity between the Fokker-Planck equation and the Schrödinger equation is considered.  相似文献   

5.
Following Schrödinger a stochastic interpretation of quantum mechanics is given based on the introduction of an intermediate probability in diffusion processes. The Schrödinger equation is derived following Nelson's approach and following a variational approach. Some problems of the quantum theory of measurement are discussed.  相似文献   

6.
Stochastic derivations of the Schrödinger equation are always developed on very general and abstract grounds. Thus, one is never enlightened which specific stochastic process corresponds to some particular quantum mechanical system, that is, given the physical system—expressed by the potential function, which fluctuation structure one should impose on a Langevin equation in order to arrive at results identical to those comming from the solutions of the Schrödinger equation. We show, from first principles, how to write the Langevin stochastic equations for any particular quantum system. We also show the relation between these Langevin equations and those proposed by Bohm in 1952. We present numerical simulations of the Langevin equations for some quantum mechanical problems and compare them with the usual analytic solutions to show the adequacy of our approach. The model also allows us to address important topics on the interpretation of quantum mechanics.  相似文献   

7.
《Physics letters. A》2005,337(3):166-182
Stochastic wave equations of Schrödinger type are widely employed in physics and have numerous potential applications in chemistry. While some accurate numerical methods exist for particular classes of stochastic differential equations they cannot generally be used for Schrödinger equations. Efficient and accurate methods for their numerical solution therefore need to be developed. Here we show that existing Runge–Kutta methods for ordinary differential equations (odes) can be modified to solve stochastic wave equations provided that appropriate changes are made to the way stepsizes are selected. The order of the resulting stochastic differential equation (sde) scheme is half the order of the ode scheme. Specifically, we show that an explicit 9th order Runge–Kutta method (with an embedded 8th order method) for odes yields an order 4.5 method for sdes which can be implemented with variable stepsizes. This method is tested by solving systems of equations originating from master equations and from the many-body Schrödinger equation.  相似文献   

8.
拉曼增益对孤子传输特性的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
利用考虑拉曼增益效应的非线性薛定谔方程, 在忽略光纤损耗的情况下, 采用基于MATLAB的分步傅里叶数值算法, 得出线性算符和非线性算符具体的表达式, 分步作用于光孤子脉冲传输方程, 仿真模拟了光孤子在光纤中传输时的演变. 与不考虑拉曼增益的光孤子在光纤中传输相对比, 探析了拉曼增益对孤子传输特性的影响.拉曼增益会破坏孤子的传输周期, 导致孤子在光纤中传输时快速衰减, 并且影响程度和输入孤子的脉冲峰值功率大小有关, 拉曼增益对基态孤子和高阶孤子的影响也不相同. 关键词: 拉曼增益 孤子 对称分步傅里叶法 非线性薛定谔方程  相似文献   

9.
The Feynman formulas give a representation of a solution of the Cauchy problem for a Schrödinger-type equation (in a special case, for a heat-type equation) using the limit of integrals of finite multiplicity over Cartesian powers of the phase space (in the special case of the configuration space). The limit thus obtained, defining an explicit representation of a one-parameter unitary group e it? or a similar object (in our case, this concerns the semigroup e t? , which is often referred to in the literature as the Schrödinger semigroup) by integral operators, is interpreted by using Feynman integrals, whereas the expression thus obtained is referred in turn as the Feynman formula. As a rule, the Chernoff theorem, which is a generalization of the well known Trotter formula, is used in the derivation of the Feynman formula.In the paper, Feynman formulas for Schrödinger semigroups e t? are obtained, where the role of ? is played by the operator ? a +V which is a perturbation of the self-adjoint extension of the Laplace operator (parametrized by some a ∈ (?∞, ∞]).  相似文献   

10.
This work concerns the problem associated with averaging principle for a higher order nonlinear Schrödinger equation perturbed by a oscillating term arising as the solution of a stochastic reaction–diffusion equation evolving with respect to the fast time. This model can be translated into a multiscale stochastic partial differential equations. Stochastic averaging principle is a powerful tool for studying qualitative analysis of stochastic dynamical systems with different time-scales. To be more precise, under suitable conditions, we prove that there is a limit process in which the fast varying process is averaged out and the limit process which takes the form of the higher order nonlinear Schrödinger equation is an average with respect to the stationary measure of the fast varying process. Finally, by using the Khasminskii technique we can obtain the rate of strong convergence for the slow component towards the solution of the averaged equation, and as a consequence, the system can be reduced to a single higher order nonlinear Schrödinger equation with a modified coefficient.  相似文献   

11.
The continuous states of the l-wave Schrödinger equation for the diatomic molecule represented by the hyperbolical function potential are carried out by a proper approximation scheme to the centrifugal term. The normalized analytical radial wave functions of the l-wave Schrödinger equation for the hyperbolical function potential are presented and the corresponding calculation formula of phase shifts is derived. Also, we interestingly obtain the corresponding bound state energy levels by analyzing analytical properties of scattering amplitude.  相似文献   

12.
Effective mass Schrödinger equation is solved exactly for a given potential. Nikiforov-Uvarov method is used to obtain energy eigenvalues and the corresponding wave functions. A free parameter is used in the transformation of the wave function. The effective mass Schrödinger equation is also solved for the Morse potential transforming to the constant mass Schrödinger equation for a potential. One can also get solution of the effective mass Schrödinger equation starting from the constant mass Schrödinger equation.  相似文献   

13.
We construct explicit Darboux transformations of arbitrary order for a class of generalized, linear Schrödinger equations. Our construction contains the well-known Darboux transformations for Schrödinger equations with position-dependent mass, Schrödinger equations coupled to a vector potential and Schrödinger equations for weighted energy.  相似文献   

14.
Integral form of the space-time-fractional Schrödinger equation for the scattering problem in the fractional quantum mechanics is studied in this paper. We define the fractional Green’s function for the space-time fractional Schrödinger equation and express it in terms of Fox’s H-function and in a computable series form. The asymptotic formula of the Green’s function for large argument is also obtained, and applied to study the fractional quantum scattering problem. We get the approximate scattering wave function with correction of every order.  相似文献   

15.
Two decades ago, standard quantum mechanics entered into a new territory called space-fractional quantum mechanics, in which wave dynamics and effects are described by the fractional Schrödinger equation. Such territory is now a key and hot topic in diverse branches of physics, particularly in optics driven by the recent theoretical proposal for emulating the fractional Schrödinger equation. However, the light-wave propagation in saturable nonlinear media with space fractional derivatives is yet to be clearly disclosed. Here, such nonlinear optics phenomenon is theoretically investigated based on the nonlinear fractional Schrödinger equation with nonlinear lattices—periodic distributions of either focusing cubic (Kerr) or quintic saturable nonlinearities—and the existence and evolution of localized wave structures allowed by the model are addressed. The model upholds two kinds of one-dimensional soliton families, including fundamental solitons (single peak) and higher-order solitonic structures consisting of two-hump solitons (in-phase) and dipole ones (anti-phase). Notably, the dipole solitons can be robust stable physical objects localized merely within a single well of the nonlinear lattices—previously thought impossible. Linear-stability analysis and direct simulations are executed for both soliton families, and their stability regions are acquired. The predicted solutions can be readily observed in optical experiments and beyond.  相似文献   

16.
The Fokker-Planck equation is useful to describe stochastic processes. Depending on the force acting in the system, the solution of this equation becomes complicated and approximate or numerical solutions are needed. The relation with the Schrödinger equation allows building a method to obtain solutions of the Fokker-Planck equation. However, this approach has been limited to the study of confined potentials, restricting its applicability. In this work, we suggest a general treatment for non-confining potentials through the use of series of functions based on the solution of the Schrödinger equation, with part of discrete spectrum and part of continuum spectrum. Two examples, the Rosen-Morse potential and a limited harmonic potential, are analyzed using the suggested approach.  相似文献   

17.
In this research, we apply two different techniques on nonlinear complex fractional nonlinear Schrödinger equation which is a very important model in fractional quantum mechanics. Nonlinear Schrödinger equation is one of the basic models in fibre optics and many other branches of science. We use the conformable fractional derivative to transfer the nonlinear real integer-order nonlinear Schrödinger equation to nonlinear complex fractional nonlinear Schrödinger equation. We apply new auxiliary equation method and novel \(\left( {G'}/{G}\right) \)-expansion method on nonlinear complex fractional Schrödinger equation to obtain new optical forms of solitary travelling wave solutions. We find many new optical solitary travelling wave solutions for this model. These solutions are obtained precisely and efficiency of the method can be demonstrated.  相似文献   

18.
In the present paper, Feynman formulas are obtained for Schrödinger semigroups generated by self-adjoint operators which are perturbations of self-adjoint extensions of the second-order Hamiltonian operator ?Δ g,0/2+V (throughout the paper, the coefficient ?1/2 at Δ g,0 is omitted to simplify the formulas) which describe the diffusion of a quasiparticle with position-dependent mass varying jump-like on a line. Every extension of this kind is defined by some invertible operator and is characterized by matching conditions at a jump point. The Schrödinger semigroups generated by self-adjoint Laplace operators and defined by the corresponding boundary conditions define solutions of initial-boundary value problems. In turn, the term “Feynman formulas” is applied (in the present case) to an explicit representation of the Schrödinger semigroup \(e^{t\hat H^T } \) in the form of a limit of integrals of finite multiplicity over Cartesian powers of some configuration space. In essence, the Feynman-Kac formula is a “probabilistic interpretation” of the Feynman formulas. Namely, the multiple integrals in the Feynman formulas approximate integrals against some measures on the space of trajectories (functions defined on an interval of the real line and ranging in the configuration space). Thus, the Feynman formulas enable one to evaluate integrals over spaces of trajectories. A crucial role in the proof of the Feynman formulas is played by the Chernoff theorem, which is a generalization of the famous Trotter formula. The result proved in the present paper is a demonstration of a part of the results recently announced by O. G. Smolyanov and H. von Weizäcker (“Feynman Formulas Generated by Self-Adjoint Extensions of the Laplacian,” Dokl. Ross. Akad. Nauk 426 (2), 162–165 (2009) [Doklady Mathematics, 2009 79 (3), 335–338 (2009)]). The formulations of the results in question are inessentially modified here.  相似文献   

19.
20.
Absorbing boundary conditions (ABCs) are generally required for simulating waves in unbounded domains. As one of those approaches for designing ABCs, perfectly matched layer (PML) has achieved great success for both linear and nonlinear wave equations. In this paper we apply PML to the nonlinear Schrödinger wave equations. The idea involved is stimulated by the good performance of PML for the linear Schrödinger equation with constant potentials, together with the time-transverse invariant property held by the nonlinear Schrödinger wave equations. Numerical tests demonstrate the effectiveness of our PML approach for both nonlinear Schrödinger equations and some Schrödinger-coupled systems in each spatial dimension.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号