共查询到20条相似文献,搜索用时 15 毫秒
1.
We are witnessing today a golden age of innovation with novel magnetic materials and with discoveries important for both basic science and device applications. Computation and simulation have played a key role in the dramatic advances of the past and those we are witnessing today. A goal-driving computational science—simulations of every-increasing complexity of more and more realistic models has been brought into greater focus with greater computing power to run sophisticated and powerful software codes like our highly precise full-potential linearized augmented plane wave (FLAPW) method. Indeed, significant progress has been achieved from advanced first-principles FLAPW calculations for the predictions of surface/interface magnetism. One recently resolved challenging issue is the role of noncollinear magnetism (NCM) that arises not only through the SOC, but also from the breaking of symmetry at surfaces and interfaces. For this, we will further review some specific advances we are witnessing today, including complex magnetic phenomena from noncollinear magnetism with no shape approximation for the magnetization (perpendicular MCA in transition-metal overlayers and superlattices; unidirectional anisotropy and exchange bias in FM and AFM bilayers; constricted domain walls important in quantum spin interfaces; and curling magnetic nano-scale dots as new candidates for non-volatile memory applications) and most recently providing new predictions and understanding of magnetism in novel materials such as magnetic semiconductors and multi-ferroic systems. 相似文献
2.
3.
4.
The Lie symmetry and the Mei symmetry of a rotational relativistic system in phase space are studied. The definition, criterion and conserved quantity of the Lie symmetry and the Mei symmetry of a rotational relativistic system in phase space are given. The relation between the Lie symmetry and the Mei symmetry is found. An example is given to illustrate the application of the result. 相似文献
5.
We discuss symmetry breaking in the weak magnetism form factors for the semileptonic octet baryon decays. In the chiral quark
model, the symmetry breaking can be accounted for in the masses and the quark spin polarizations can take on more general
values due to Goldstone boson depolarization. Here we clarify some features of the chiral quark model prediction for the weak
magnetism and compare to the corresponding result of the chiral quark soliton model.
Received: 29 June 1999 / Revised version: 15 September 1999 / Published online: 8 December 1999 相似文献
6.
Based on the variational Gutzwiller theory, we present a method for the computation of response functions for multiband Hubbard models with general local Coulomb interactions. The improvement over the conventional random-phase approximation is exemplified for an infinite-dimensional two-band Hubbard model where the incorporation of the local multiplet structure leads to a much larger sensitivity of ferromagnetism on the Hund coupling. Our method can be implemented into local-density approximation and Gutzwiller schemes and will therefore be an important tool for the computation of response functions for strongly correlated materials. 相似文献
7.
We report on a very recently developed three-dimensional angular momentum projected relativistic mean-field theory with point-coupling interaction (3DAMP+RMF-PC). Using this approach the same effective nucleon-nucleon interaction is adopted to describe both the single-particle and collective motions in nuclei. Collective states with good quantum angular momentum are built projecting out the intrinsic deformed meanfield states. Results for 24Mg are shown as an illustrative application. 相似文献
8.
We report on a very recently developed three-dimensional angular momentum projected relativistic mean-field theory with point-coupling interaction (3DAMP+RMF-PC). Using this approach the same effective nucleon-nucleon interaction is adopted to describe both the single-particle and collective motions in nuclei. Collective states with good quantum angular momentum are built projecting out the intrinsic deformed mean-field states. Results for 24Mg are shown as an illustrative application. 相似文献
9.
We investigate azimuthal instabilities of intense rotationally symmetric pulsed beams propagating in air. Although the spatial-temporal evolution of the field is strongly influenced by the onset of plasma generation, the instabilities are caused chiefly by the Kerr effect. We conclude that calculations that assume rotational symmetry become unrealistic because of the fast growth of azimuthal instabilities shortly after the onset of plasma generation. 相似文献
10.
11.
A. Feltrup K. Huang C.A. Krülle I. Rehberg 《The European physical journal. Special topics》2009,179(1):19-24
In a swirled circular container, granular particles can change their sense of rotation when the packing density is increased,
exhibiting a transition from rotational to reptational motion. In addition, here we report a ‘snake mode’ that arises at a
lower packing density, where particles form a chain like cluster that rotates with the same frequency as the container. We
investigate experimentally transitions between these three modes under the influence of geometrical distortions which break
the rotational symmetry of the container. The driving mechanism for the rotational motion of the clusters is also discussed. 相似文献
12.
We investigate multiband Hubbard models for the three iron 3d t(2g) bands and the two iron 3d e(g) bands in LaOFeAs by means of the Gutzwiller variational theory. Our analysis of the paramagnetic ground state shows that neither Hartree-Fock mean-field theories nor effective spin models describe these systems adequately. In contrast to Hartree-Fock-type approaches, the Gutzwiller theory predicts that antiferromagnetic order requires substantial values of the local Hund's-rule exchange interaction. For the three-band model, the antiferromagnetic moment fits experimental data for a broad range of interaction parameters. However, for the more appropriate five-band model, the iron e(g) electrons polarize the t(2g) electrons and they substantially contribute to the ordered moment. 相似文献
13.
We predict squeezed light generation through the spontaneous rotational symmetry breaking occurring in a degenerate optical parametric oscillator (DOPO) pumped above threshold. We show, within the linearized theory, that a DOPO with spherical mirrors, in which the signal and idler fields correspond to first-order Laguerre-Gauss modes, produces a perfectly squeezed vacuum with the shape of a Hermite-Gauss mode. This occurs at any pumping level above threshold; hence, the phenomenon is noncritical. Imperfections of the rotational symmetry, due, e.g., to cavity anisotropy, are shown to have a small impact. 相似文献
14.
15.
Role of vacancy-type(N vacancy(VN) and Ga vacancy(VGa)) defects in magnetism of GaMnN is investigated by first-principle calculation.Theoretical results show that both the VNand VGainfluence the ferromagnetic state of a system.The VNcan induce antiferromagnetic state and the VGaindirectly modify the stability of the ferromagnetic state by depopulating the Mn levels in GaMnN.The transfer of electrons between the vacancy defects and Mn ions results in converting Mn~(3+)(d~4) into Mn~(2+)(d5).The introduced VNand the ferromagnetism become stronger and then gradually weaker with Mn concentration increasing,as well as the coexistence of Mn~(3+)(d~4) and Mn~(2+)(d~5) are found in GaMnN films grown by metal–organic chemical vapor deposition.The analysis suggests that a big proportion of Mn~(3+)changing into Mn~(2+)will reduce the exchange interaction and magnetic correlation of Mn atoms and lead to the reduction of ferromagnetism of material. 相似文献
16.
17.
The theory of symmetry for a rotational relativistic Birkhoff system is studied. In terms of the invariance of the rotational relativistic Pfaff-Birkhoff-D'Alembert principle under infinitesimal transformations, the Noether symmetries and conserved quantities of a rotational relativistic Birkhoff system are given. In terms of the invariance of rotational relativistic Birkhoff equations under infinitesimal transformations, the Lie symmetries and conserved quantities of the rotational relativistic Birkhoff system are given. 相似文献
18.
Harald Grosse Fedele Lizzi Harold Steinacker 《General Relativity and Gravitation》2011,43(9):2531-2539
We argue that some features of the standard model, in particular the fermion assignment and symmetry breaking, can be obtained in matrix model which describes noncommutative gauge theory as well as gravity in an emergent way. The mechanism is based on the presence of some extra (matrix) dimensions. These extra dimensions are different from the usual ones which give to a noncommutative geometry of the Grönewold-Moyal type, and are reminiscent of the Connes-Lott model, although the action is very different. 相似文献
19.
In the standard model for electroweak interactions, the Higgs sector is known to display a custodial symmetry protecting the mass relation m(W(+/-))(2) = m(W(3))(2) from large corrections. When considering extensions of the scalar sector, this symmetry has to be introduced by hand in order to pass current electroweak precision tests in a natural way. In this Letter, we implement a generalized custodial symmetry in the two-Higgs-doublet model. Assuming the invariance of the potential under CP transformations, we prove the existence of a new custodial scenario characterized by m(H(+/-))(2) = m(H(0))(2) instead of m(H(+/-))(2) = m(A(0))(2). Consequently, the pseudoscalar A(0) may be much lighter than the charged H(+/-), giving rise to interesting phenomenology. 相似文献
20.
We propose a scheme where the three relevant physics scales related to the supersymmetry, electroweak, and baryon minus lepton (B−L) breakings are linked together and occur at the TeV scale. The phenomenological implications in the Higgs and leptonic sectors are discussed. 相似文献