首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The UV-visible (UVV) technique was used to monitor latex film formation in a soft polymer matrix. Various film samples were prepared by increasing the amount of poly(methyl methacrylate) (PMMA) particles in a poly(isobutylene) (PIB) matrix. These samples were then annealed above the glass transition temperature to promote latex film formation. Transmitted photon intensities, Itr, were measured for each film. It is observed that Itr decrease as the latex content is increased, which was explained by the increase in scattered light intensity, Isc. The drastic increase in Isc above a certain latex content is attributed to the site percolation of latex particles in the PIB matrix. The percolation threshold and the critical exponent were measured and found to be 0.3 and 0.4, respectively. The increase in Itr by annealing of film samples above Tg was explained with the void closure process below 0.8 occupation probability. When the film is occupied completely with the latex particles, interdiffusion of polymer chains was observed. Viscous flow and chain diffusion activation energies were determined and found to be 8 and 51 kcal/mol, respectively.  相似文献   

2.
The electrostatic manipulation of nanoparticles using nonuniform electric fields (dielectrophoresis) has proved a useful method of investigating the movement of charge around colloidal particles. While previous work has explained many of the ways in which particle behavior deviates from that predicted by classical Maxwell-Wagner interfacial polarization theory, there exists an additional, anomalous polarization mechanism observed in media of high conductivity, causing an unexpected observation of positive dielectrophoresis. Here this is suggested that this may be explained in terms of the polarization of the Stern layer.  相似文献   

3.
The dynamic electrophoretic mobility of a concentrated dispersion of biocolloids such as cells and microorganisms is modeled theoretically. Here, a biological particle is simulated by a particle, the surface of which contains dissociable functional groups. The results derived provide basic theory for the quantification of the surface properties of a biocolloid through an electroacoustic device, which has the merit of making direct measurement on a concentrated dispersion without dilution. Two key parameters are defined to characterize the phenomenon under consideration: the first, A, is associated with the pH of the dispersion, and the second, B, is associated with the equilibrium constant of the dissociation reaction of the functional group. We show that if A is large and/or B is small, the surface potential is high, and the effect of double-layer polarization becomes significant. In this case the dynamic electrophoretic mobility may have a local maximum and a phase lead as the frequency of the applied electric field varies. Due to the hydrodynamic interaction between neighboring particles, the dynamic electrophoretic mobility decreases with the concentration of dispersion.  相似文献   

4.
In environmental engineering, adsorption and desorption are phenomena commonly referred to as responsible for pollution dispersion, retention, or retardation in soils, aquifers, and hydrologic systems. They are also used to remove organic pollutants from water or odorous compounds in gas deodorization. Most often, the characterization of the aqueous adsorption systems that are of engineering interest involves a narrow adsorbate concentration range and low values of the adsorbate concentration. The practice is to use the Freundlich equation that best fits most data and is considered sufficient to design adsorption contactors. However, no physical or chemical meaning can be associated with the values taken by the parameters. The present paper gives a new way of analyzing adsorption data, using an extension of the Freundlich equation and the Gaussian distribution function that makes it possible to associate parameter values of this extension with the adsorbate–adsorbent normal interaction energy, its heterogeneity, and to some extent the adsorbate–adsorbate lateral interaction energy.  相似文献   

5.
This paper presents a closed form analytical solution to the augmented Young-Laplace equation for the meniscus profile in a capillary formed between four equal-sized tangent cylinders centered on the vertices of a square. The solution is valid for a large class of disjoining pressure isotherms and contact angles.  相似文献   

6.
Although hydrotropy is extensively used in industry, the molecular mechanism of hydrotropic solubilization has not been completely elucidated yet. In this paper the interaction between a nonionic surfactant (ethoxylated fatty alcohol containing between five and six oxyethylenic units) and sodium p-toluene sulfonate is examined. Surface tension measurements confirm that the hydrotropic effect occurs at a concentration in which the hydrotropes self-associate. Photon correlation spectroscopy studies show that for this concentration of hydrotropes a drastic reduction in the surfactant micellar radius occurs. Furthermore the luminescence of the hydrotrope used as a fluorescence probe indicates that at low concentrations p-toluene sulfonate dissolves in the surfactant micelles but beyond the minimum concentration for hydrotropic solubilization the hydrotrope is present in the aqueous phase. These results suggest that the hydrotropic effect is related to alterations in the water structure induced by the hydrotrope molecules and to the presence of hydrotrope aggregates that furnish an appropriate niche for the surfactant amphiphile.  相似文献   

7.
Effect of structural stress on the intercalation rate of kaolinite   总被引:6,自引:0,他引:6  
Particle size in kaolinite intercalation showed an inverse reactivity trend compared with most chemical reactions: finer particles had lower reactivity and some of the fine particles cannot be intercalated. Although this phenomenon was noted in the early 1960s and several hypotheses have been reported, there is no widely accepted theory about the unusual particle size response in the intercalation. We propose that structural stress is a controlling factor in the intercalation and the stress contributes to the higher reactivity of the coarser particles. In this study, we checked the structural deformation spectroscopically and indirectly proved the structural stress hypothesis. A Georgia kaolinite was separated into nine size fractions and their intercalations by hydrazine monohydrate and potassium acetate were investigated with X-ray diffraction (XRD) and Fourier-transform infrared (FTIR) analyses. The apical Si-O band of kaolinite at 1115 cm(-1) shifted to 1124 cm(-1) when the mineral was intercalated to 1.03 nm by hydrazine monohydrate, and its strong pleochroic properties became much weaker. Similar reduction in pleochroism was observed on the surface OH bands of kaolinite after intercalation. Both the bending vibrations of the inner OH group at 914 cm(-1) and of the surface OH group at 937 cm(-1) shifted to 903 cm(-1) after intercalation by hydrazine. A new band for the inner OH group appeared at 3611 cm(-1) during the deintercalation of the 1.03 nm hydrazine kaolinite complex. Pleochroism change in the apical Si-O band suggested the tetrahedra had increased tilt with respect to the (001) plane. The tilt of the Si-O apical bond could occur only if the octahedra had also undergone structural rearrangement during intercalation. These changes in the octahedral and tetrahedral sheets represent some change in the manner of compensation for the structural misfit of the tetrahedral sheet and octahedral sheet. As the lateral dimensions of a kaolinite particle increases, the cumulative degree of misfit increases. Intercalation breaks the hydrogen bonds between layers and allows for the structure to reduce the accumulated stress in some other manner. The reversed size effect on intercalation probably was not caused by crystallinity differences as reported in the literature, because the Hinckley and Lietard crystallinity indices of the four clay fractions were very close to each other. Impurities, such as dickite- or nacrite-like phases are not significant in the studied sample as suggested by the XRD and IR results, they are not the main reasons for the lower reactivity of the finer particles.  相似文献   

8.
The deformation, drainage, and rupture of an axisymmetrical film between colliding drops in the presence of insoluble surfactants under the influence of van der Waals forces is studied numerically at small capillary and Reynolds numbers and small surfactant concentrations. Constant-force collisions of Newtonian drops in another Newtonian fluid are considered. The mathematical model is based on the lubrication equations in the gap between drops and the creeping flow approximation of Navier–Stokes equations in the drops, coupled with velocity and stress boundary conditions at the interfaces. A nonuniform surfactant concentration on the interfaces, governed by a convection–diffusion equation, leads to a gradient of the interfacial tension which in turn leads to additional tangential stress on the interfaces (Marangoni effects). The mathematical problem is solved by a finite-difference method on a nonuniform mesh at the interfaces and a boundary-integral method in the drops. The whole range of the dispersed to continuous-phase viscosity ratios is investigated for a range of values of the dimensionless surfactant concentration, Peclét number, and dimensionless Hamaker constant (covering both “nose” and “rim” rupture). In the limit of the large Peclét number and the small dimensionless Hamaker constant (characteristic of drops in the millimeter size range) a fair approximation to the results is provided by a simple expression for the critical surfactant concentration, drainage being virtually uninfluenced by the surfactant for concentrations below the critical surfactant concentration and corresponding to that for immobile interfaces for concentrations above it.  相似文献   

9.
Electroosmosis experiments through a cation-exchange membrane have been performed using NaCl solutions in different experimental situations. The influence of an alternating (ac) sinusoidal perturbation, of known angular frequency and small amplitude, superimposed to the usual applied continuous (dc) signal on the electroosmotic flow has been studied. The experimental results show that the presence of the ac perturbation affects the electroosmotic flow value, depending on the frequency of the ac signal and on the solution stirring conditions. In the frequency range studied, two regions have been observed where the electroosmotic flow reaches a maximum value: one at low frequencies (Hz); and another at frequencies of the order of kHz. These regions could be related to membrane relaxation phenomena.  相似文献   

10.
The exchange of the original cation present on a Laponite clay (usually Na+) for heavy atoms such as Rb+, Cs+, and Tl+ significantly alters the emission characteristics of some aromatic hydrocarbons (p-terphenyl, naphthalene, pyrene, and biphenyl). The increase of the atomic mass of the cation induces a decrease of the fluorescence emission simultaneous with an increase of the emission in the region of lower energies of the spectra, ascribed to the phosphorescence of those hydrocarbons. Time-resolved experiments for the pyrene–clay system showed a decrease of singlet lifetimes for the heavier atoms. Hydrocarbon aggregates were also detected from both the emission spectra and the time-resolved studies. The “excimer-like” emission showed longer lifetimes (10–25 ns) than the monomolecular hydrocarbons (1–3 ns), as already found for other similar systems. The amount of aggregates increased for the heavier cations due to the smaller surface available on the clay particles. Experiments increasing the amount of Tl+ in samples containing a constant concentration of naphthalene allowed evaluation of the distance between the heavy atoms and the probe on the clay surface. The Perrin model treatment was used and resulted in approximately R0=9.2 Å.  相似文献   

11.
A novel bipolar interface that consists of cationic surfactant and cation-exchange membrane was successfully prepared in an aqueous electrolyte system. This bipolar interface shows a ionic rectification behavior similar to that observed in bipolar membranes. However, different from bipolar membranes, this system has a total rectification behavior, where we cannot observe the occurrence of a water-splitting phenomenon, which always occurs in the bipolar membrane process under reverse bias conditions.  相似文献   

12.
13.
The triple-layer model is one of the most widely used surface complexation models for adsorption on mineral surfaces. In current implementations, the accounting of ions in the diffuse layer may be neglected, resulting in a charge imbalance in the modeled solution as well as errors in mass balance, particularly in low ionic strength solutions when mineral-specific surface area is large. This paper introduces an internally consistent scheme for modeling diffuse layer ions in the triple-layer model. Model calculations illustrate the difference between the proposed and previous implementations using an idealized example. The guarantee of charge balance on both sides of the interface assures that pH is accurately modeled. This may be important in reactive transport simulations, such as modeling adsorption in low ionic strength variable charge soil solutions.  相似文献   

14.
Fumed oxides, such as silica, alumina, titania, and mixed X/silicas (X=Al2O3 (AS), TiO2 (TS), CVD-TiO2, Al2O3/TiO2 (AST)), pristine or covered by carbon deposits formed due to pyrolysis of cyclohexene, were studied using nitrogen adsorption–desorption, photon correlation spectroscopy particle sizing, and electrophoresis. A significant influence of the nature of surface-active sites and structural features of oxides (individual silica, mixed fumed, or prepared using chemical vapor deposition (CVD)) on the pyrolysis of cyclohexene is observed with respect to the pore size distributions due to differences between primary particles in aggregates and on their outer surfaces in the filling of channels by pyrocarbon, resulting also in a decrease in fractal dimension. Structural characteristics and dependences of the particle size distribution and electrokinetic potential of X/SiO2 and C/X/SiO2 on the pH of aqueous suspensions suggest that the carbon deposit covers mainly acidic sites at the X/SiO2 interfaces and X phase patches possessing catalytic activity in pyrolysis, as the negative charge of particles is reduced by pyrocarbon grafting.  相似文献   

15.
The JKR method has been applied for studying adhesion between poly(dimethylsiloxane) (PDMS) caps and Langmuir–Blodgett cellulose surfaces including the substrate, hydrophobized mica, and two flat mineral surfaces, bare mica and glass. The self-adhesion of PDMS caps and oxidized PDMS caps are included as a reference to compare with literature data. The results of the measurements have been compared with previous studies using the surface force apparatus and similar systems. A satisfactory agreement is obtained for simple systems showing no, or very limited, hysteresis between loading and unloading curves. In several cases, however, a large hysteresis is found between loading and unloading curves, with a larger adhesion measured from the pull-off force than from the JKR-curve determined on loading. This is, for instance, the case for PDMS against cellulose. The situation is analogous to that found in wetting studies showing a large hysteresis between advancing and receding contact angles.  相似文献   

16.
The filming process of polystyrene nanolatex (NPS) particles was studied by a combination of various methods. For a constant annealing time of 1 h, the AFM images showed that the deformation and interdiffusion temperatures of NPS particles were ca. 90 and 100-110 degrees C, respectively. In spin-lattice relaxation measurements of solid state NMR, it is found that T1L, T1S, and PL increased significantly after annealing at 90 and 100 degrees C for 1 h. DSC results showed that there was a exothermic peak near Tg after annealing for 1 h at the elected temperatures below 95 degrees C; otherwise, the exothermic peak disappeared after annealing at 100 degrees C or above. The apparent density of NPS increased suddenly in the temperature range of 90-110 degrees C. The results indicated that the macromolecules are highly constrained in NPS particles, leading to higher conformational energy, with more free volume and segments less restricted, which are the driving forces for the particles sintering at a lower temperature compared to the micro-PS particles with larger diameter.  相似文献   

17.
A Novel Method for Surface Free-Energy Determination of Powdered Solids   总被引:1,自引:0,他引:1  
Interfacial solid/liquid interactions play a crucial role in wetting, spreading, and adhesion processes. In the case of a flat solid surface, contact angle measurements are commonly utilized for the determination of the solid surface free energy and its components. However, if such a surface cannot be obtained, then the contact angle can not be measured directly. Usually methods based on imbibition of probe liquids into a thin porous layer or column are applied. In this paper a novel method, also based on the capillary rise, is proposed for the solid surface free-energy components determination. Actually, it is a modification of the thin column wicking method; similar theoretical background can be applied together with that appropriate for the capillary rise method of liquid surface tension determination. The proposed theoretical approach and procedure are verified by using single glass capillaries, and then alumina and ground glass powders were used for the method testing. Thus obtained surface free-energy components for these solids, for both glass and alumina, agree well with the literature values.  相似文献   

18.
Specific conductivities of alkyldimethylbenzylammonium chlorides (alkyl=decyl-, dodecyl-, tetradecyl-, and hexadecyl-) in aqueous solutions were measured as a function of molality and temperature. Critical micelle molalities (cmc) and degrees of ionization of the micelles, beta, were estimated from the dependence of the specific conductivity on molality. It was found that temperature dependence of cmc is U-shaped with a minimum shifting toward higher temperatures with a decrease in the chain length of the alkyl group. The temperature dependence of ln xcmc (where xcmc is the cmc in mole fraction units) was fitted to the equation of Muller, which we modified by taking into account the temperature dependencies both of beta and of change in heat capacity upon micellization. From the fitting parameters, Gibbs free energies, enthalpies, and entropies of micellization as a function of temperature were estimated.  相似文献   

19.
Alternating adsorption of multivalent ions and oppositely charged polyelectrolytes on colloid particles has been investigated. Multilayer films composed of Tb3+/polysterene sulfonate (PSS) and 4-pyrene sulfate/polyallylamine (PAH) were successfully assembled on polysterene sulfonate (PS) and melamine formaldehyde (MF) latex particles. The amount of assembled material was estimated by fluorescence and the linear growth of the film versus the number of layers was demonstrated. These multilayers are not stable and can be decomposed by salt and temperature. Dissolution of MF particles leads to formation of hollow capsules consisting of multivalent ion/polyelectrolyte multilayers. Comparative analysis of the capsules was done by confocal and scanning force microscopy. Complex hollow spheres consisting of Tb3+/PSS or 4-PS/PAH as an inner shell and stable PSS/PAH as an outer shell were produced. Due to selective permeability of the outer shell after degradation of the inner shell the multivalent ions are released out of the capsule while the polyelectrolytes fill the capsule interior. This is indicative of swelling of the capsule by osmotic pressure. The filled capsules were studied by confocal and scanning electron microscopy. Possibilities of encapsulating macromolecules in defined amounts per capsule are discussed.  相似文献   

20.
Photoinduced electron-transfer reaction of anthracene with N,N-diethylaniline (DEA) was studied in the SDS (sodium dodecyl sulfate)/BA (benzyl alcohol)/H2O system. In an oil/water microemulsion, only the excited anthracene located at the interface can be quenched by DEA. In a water/oil microemulsion, this quenching reaction occurs in the BA continuous phase. Besides being the quencher of the excited anthracene, DEA could also change the system's structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号