首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nanoporous materials with functional frameworks have attracted attention because of their potential for various applications. Silica‐based mesoporous materials generally consist of amorphous frameworks, whereas a molecular‐scale lamellar ordering within the pore wall has been found for periodic mesoporous organosilicas (PMOs) prepared from bridged organosilane precursors. Formation of a “crystal‐like” framework has been expected to significantly change the physical and chemical properties of PMOs. However, until now, there has been no report on other crystal‐like arrangements. Here, we report a new molecular‐scale ordering induced for a PMO. Our strategy is to form pore walls from precursors exhibiting directional H‐bonding interaction. We demonstrate that the H‐bonded organosilica columns are hexagonally packed within the pore walls. We also show that the H‐bonded pore walls can stably accommodate H‐bonding guest molecules, which represents a new method of modifying the PMO framework.  相似文献   

2.
A series of ethylene-containing mesoporous organosilica materials were fabricated via surfactant-mediated assembly of 1,2-bis(triethoxysilyl)ethylene (BTEE) organosilica precursor using alkyltrimethylammonium bromide (CnTAB) surfactants with different alkyl chain length (n=12, 14, 16, 18) as supramolecular templates. The presence of molecularly ordered ethylene groups in the resulting periodic mesoporous organosilica (PMO) materials was confirmed by XRD data along with 29Si and 13C MAS NMR analysis. Additional characterization techniques, namely nitrogen sorption, TEM, and TGA, confirmed the structural ordering and thermal stability of the molecularly ordered ethylene-bridged PMOs. The PMOs exhibit molecular-scale ordering (with a periodicity of 5.6 A) within the organosilica framework and tunable pore size, which depending on the alkyl chain length of the surfactant templates, varied in the range 23-41 A. Furthermore, depending on the alkyl chain length of the templates, the particle morphology of the PMOs gradually changed from monodisperse spheres (for C12TAB) to rod or cakelike particles (for C14TAB) and elongated ropelike particles for longer chain surfactants. Variations in the surfactant chain length therefore allowed control of both the pore size and particle morphology without compromising molecular-scale or structural ordering. The reactivity of ethylene groups was probed by bromination, which demonstrated the potential for further functionalization of the PMOs.  相似文献   

3.
A new aromatic periodic mesoporous organosilica material containing benzene functional groups that are symmetrically integrated with three silicon atoms in an organosilica mesoporous framework is reported. The material has a high surface area, well-ordered mesoporous structure and thermally stable framework aromatic groups. The functional aromatic moieties were observed to undergo sequential thermal transformation from a three to two and then to a one point attachment within the framework upon continuous thermolysis under air before eventually being converted to periodic mesoporous silica devoid of aromatic groups at high temperatures and longer pyrolysis times. The mesoporosity of the material was characterized by powder X-ray diffraction (PXRD), transmission electron microscopy (TEM), and nitrogen porosimetry, whereas the presence and transformation of the aromatic groups in the walls of the materials were characterized by solid-state NMR spectroscopy, mass spectrometry, and thermogravimetric analysis. The attachment of a benzene ring symmetrically onto three siloxanes of the framework was used advantageously as a cross-linker to enhance the thermal stability of the organic group. Some of these properties are investigated in comparison with other aromatic PMOs that have only two point attachments and an amorphous phenylsilica gel that has only one point attachment. The successful synthesis of the first aromatic PMO with its organic group attached within the framework through more than two points is an important step toward the synthesis of PMOs having organic groups with more complex and multiple attachments within the framework.  相似文献   

4.
The huge diversity of hierarchical micro-/nano-rigid structures existing in biological systems is increasingly becoming a source of inspiration of materials scientists and engineers to create next-generation advanced functional materials. In the past decades, these multiscale hierarchical structures have been intensively investigated to show their contributions to high performance in mechanical properties. Recently, accompanied with the development of nanotechnology, some biologically hierarchical rigid structures have been duplicated and mimicked in artificial materials through hierarchical organization of micro-/nano-building blocks. In this critical review, we will present biological rigid structural models, functional micro-/nano-building blocks, and hierarchical assembly techniques for the manufacture of bio-inspired rigid structural functional materials (177 references).  相似文献   

5.
The integration of organic and inorganic fragments within the pore walls of the periodic mesoporous organosilicas (PMOs) represents one of the recent breakthroughs in material science. The resulting PMOs are promising materials for applications in such areas as catalysis, adsorption, separation and drug-delivery. We summarize here the recent progress made in the synthesis of PMOs with hierarchical structures and large functional groups, with special emphasis on the chiral mesoporous organosilicas and their ...  相似文献   

6.
Bi- and trifunctional periodic mesoporous organosilicas (PMOs) with phenylene, thiophene, and ethane bridging groups were synthesized using 1,2-bis(triethoxysilyl)ethane (BTEE), 1,4-bis(triethoxysilyl)benzene (BTEB), and 2,5-bis(triethoxysilyl)thiophene (BTET) organosilica precursors and a poly(ethylene oxide)-poly(D,L-lactic acid-co-glycolic acid)-poly(ethylene oxide) (PEO-PLGA-PEO) triblock copolymer template under low acidic conditions. The PMO samples with different concentrations of organic bridging groups were obtained in the form of spherical particles having average diameters of 2-3 mum and 2D hexagonal (p6m) mesostructure with pore diameters of 7.3-8.4 nm. The particle morphology and chemistry of pore walls were tailored using different mixtures of organosilica precursors. Adsorption and structural properties of the aforementioned PMOs have been studied by nitrogen adsorption and small-angle X-ray scattering, whereas their framework chemistry was quantitatively analyzed by solid-state 13C and 29Si MAS NMR.  相似文献   

7.
New organosilica precursors containing two triethoxysilyl groups suitable for the organosilica material formation through the sol‐gel process were designed and synthesised. These precursors display alkyne or azide groups for attaching targeted functional groups by copper‐catalysed azide–alkyne cycloaddition (CuAAC) and can be used for the preparation of functional organosilicas following two strategies: 1) the functional group is first appended by CuAAC under anhydrous conditions, then the functional material is prepared by the sol‐gel process; 2) the precursor is first subjected to the sol‐gel process, producing porous, clickable bridged silsesquioxanes or periodic mesoporous organosilicas (PMOs), then the desired functional groups are attached by means of CuAAC. Herein, we show the feasibility of both approaches. A series of bridged bis(triethoxysilane)s with different pending organic moieties was prepared, demonstrating the compatibility of the first approach with many functional groups. In particular, we demonstrate that organic functional molecules bearing only one derivatisation site can be used to produce bridged organosilanes and bridged silsesquioxanes. In the second approach, clickable PMOs and porous bridged silsesquioxanes were prepared from the alkyne‐ or azide‐containing precursors, and thereafter, functionalised with complementary model azide‐ or alkyne‐containing molecules. These results confirmed the potential of this approach as a general methodology for preparing functional organosilicas with high loadings of functional groups. Both approaches give rise to a wide range of new functional organosilica materials.  相似文献   

8.
《化学:亚洲杂志》2018,13(16):2117-2125
Integration of functional molecular parts into nanoporous materials in a state that allows intermolecular charge or energy transfer is one of the key approaches to the development of photofunctional and electroactive materials. Herein, we report charge separation in a functionalized framework of a periodic mesoporous organosilica (PMO) self‐assembled by hydrogen bonds. Electroactive π‐conjugated organic species with different electron‐donating and electron‐accepting properties were selectively fixed onto the external surface of a nanoparticulate PMO, within the pore wall, and onto the surface of the internal mesopore. UV irradiation of the modified PMO resulted in photoinduced electron transfer and charge separation from the external surface to the pore wall and from the pore wall to the surface of the internal mesopores. These results suggest the high potential of multifunctionalized PMOs in the construction of photocatalytic reaction fields.  相似文献   

9.
We report that 2,6‐naphthylene‐bridged periodic mesoporous organosilicas exhibit unique fluorescence behavior that reflects molecular‐scale periodicities in the framework. Periodic mesoporous organosilicas consisting of naphthalene–silica hybrid frameworks were synthesized by hydrolysis and condensation of a naphthalene‐derived organosilane precursor in the presence of a template surfactant. The morphologies and meso‐ and molecular‐scale periodicities of the organosilica materials strongly depend on the synthetic conditions. The naphthalene moieties embedded within the molecularly ordered framework exhibited a monomer‐band emission, whereas those embedded within the amorphous framework showed a broad emission attributed to an excimer band. These results suggest that the naphthalene moieties fixed within the crystal‐like framework are isolated in spite of their densely packed structure, different from conventional organosilica frameworks in which only excimer emission was observed for both the crystal‐like and amorphous frameworks at room temperature. This key finding suggests a potential to control interactions between organic groups and thus the optical properties of inorganic/organic hybrids.  相似文献   

10.
In this article we report the synthesis of new periodic mesoporous organosilicas (PMOs) with the co-existence of diurea and sulfanilamide-bridged organosilica that are potentially useful for controlled drug release system. The materials possess hexagonal pores with a high degree of uniformity and show long-range order as confirmed by the measurements of small-angle X-ray scattering (SAXS), N2 adsorption isotherms, and transmission electron microscopy(TEM). FT-IR and solid state 29Si MAS and 13C CP MAS NMR spectroscopic analyses proved that the bridging groups in the framework are not cleaved and covalently attached in the walls of the PMOs. It was found that the organic functionality could be introduced in a maximum of 10 mol% with respect to the total silicon content and be thermally stable up to 230 °C. The synthesized materials were shown to be particularly suitable for adsorption and desorption of hydrophilic/hydrophobic drugs from a phosphate buffer solution at pH 7.4.  相似文献   

11.
Discrete molecular soft cages integrate multiple functionalities in one molecule. They express their functions from the confined space in their cavity, functional groups in the cavity interior wall and exterior wall, and the chelating nodes in many chelating cages. Such functional integrity render cage molecules special applications in material engineering. Increasing applications of cage molecules in material design have been reported in recent years. Compared with other cavity-rich molecular structures such as metal-organic framework (MOF) or covalent organic frameworks (COF), discrete soft cages present the unique advantage of material design flexibility, that they can easily composite with nanoparticles or polymers and exist in materials of various forms. We document the development of cage-based materials in recent years and expect to further inspire materials engineering to integrate contribution from the functionality specificity of cage molecules and ultimately promote the development of functional materials and thus human life qualities.  相似文献   

12.
Nanocrystalline cellulose (NCC) has been used to template ethylene-bridged mesoporous organosilica films with long-range chirality and photonic properties. The structural color of the organosilica films results from their chiral nematic ordering, can be varied across the entire visible spectrum, and responds to the presence of chemicals within the mesopores. To synthesize these materials, acid hydrolysis was used to remove the NCC template without disrupting the organosilica framework. The resulting mesoporous organosilica films are much more flexible than brittle mesoporous silica films templated by NCC. These materials are the first of a novel family of chiral mesoporous organosilicas with photonic properties.  相似文献   

13.
Significant successes have been made over recent years in preparing co-ordination framework polymers that show macroscopic material properties, but in the vast majority of cases this has been achieved with d-block metal-based systems. Lanthanide co-ordination frameworks also offer attractive properties in terms of their potential applications as luminescent, non-linear optical and porous materials. However, lanthanide-based systems have been far less studied to date than their d-block counterparts. One possible reason for this is that the co-ordination spheres of lanthanide cations are more difficult to control and, in the absence of design strategies for lanthanide co-ordination frameworks, it is significantly more difficult to target materials with specific properties. However, this article highlights some of the exciting possibilities that have emerged from the earliest investigations in this field with new topological families of compounds being discovered from relatively simple framework components, including unusual eight, seven and five-connected framework systems. Our own research, as well as others, is leading to a much greater appreciation of the factors that control framework formation and the resultant observed topologies of these polymers. As this understanding develops targeting particular framework types will become more straightforward and the development of designed polyfunctional materials more accessible. Thus, it can be seen that lanthanide co-ordination frameworks have the potential to open up previously unexplored directions for materials chemistry. This article focuses on the underlying concepts for the construction of these enticing and potentially highly important materials.  相似文献   

14.
A new route to periodic mesoporous aminosilicas (PMAs) that contain amine functional groups in the framework of a mesoporous network is reported. The materials are prepared via thermal ammonolysis of periodic mesoporous organosilicas (PMOs) under a flow of ammonia gas. PMOs integrate similar or even higher quantities of nitrogen-containing groups upon ammonolysis than similarly treated ordered mesoporous silicas (MCM-41). The quantity of amine groups introduced into the materials was found to depend strongly on the ammonolysis temperature. The largest loading of amine groups was obtained when a well-ordered cubic methylene PMO material without prior vacuum-drying was thermolyzed in ammonia. The ordered mesoporosity of PMOs was preserved during the ammonolysis with only a slight decrease in the mesopore size and the degree of mesostructural ordering. The extent of substitution of framework oxygen by amine and nitride groups was established by solid-state (29)Si CP-MAS, (29)Si MAS, (15)N MAS, and (13)C CP-MAS NMR spectroscopies, elemental analysis, and X-ray photoelectron spectroscopy. In some cases, methylene and methyl functional groups were also present in the PMAs along with amine functional groups, as inferred from elemental analysis and gas adsorption, particularly in cases where PMOs were subjected to ammonolysis at 400 and 550 degrees C for several hours. This resulted in new multifunctional mesoporous organoaminosilica nanomaterials with properties that could be tuned by systematically varying the relative amounts of hydrophilic amine and hydrophobic hydrocarbon pendent and framework groups. The stability upon storage was found to be much higher for PMAs obtained from PMOs than for those obtained from MCM-41 silicas under the same conditions.  相似文献   

15.
Functional porous organic polymers for heterogeneous catalysis   总被引:1,自引:0,他引:1  
Porous organic polymers (POPs), a class of highly crosslinked amorphous polymers possessing nano-pores, have recently emerged as a versatile platform for the deployment of catalysts. The bottom-up approach for porous organic polymer synthesis provides the opportunity for the design of polymer frameworks with various functionalities, for their use as catalysts or ligands. This tutorial review focuses on the framework structures and functionalities of catalytic POPs. Their structural design, functional framework synthesis and catalytic reactions are discussed along with some of the challenges.  相似文献   

16.
Electroactive organic molecules have received a lot of attention in the field of electronics because of their fascinating electronic properties, easy functionalization and potential low cost towards their implementation in electronic devices. In recent years, electroactive organic molecules have also emerged as promising building blocks for the design and construction of crystalline porous frameworks such as metal–organic frameworks (MOFs) and covalent-organic frameworks (COFs) for applications in electronics. Such porous materials present certain additional advantages such as, for example, an immense structural and functional versatility, combination of porosity with multiple electronic properties and the possibility of tuning their physical properties by post-synthetic modifications. In this Review, we summarize the main electroactive organic building blocks used in the past few years for the design and construction of functional porous materials (MOFs and COFs) for electronics with special emphasis on their electronic structure and function relationships. The different building blocks have been classified based on the electronic nature and main function of the resulting porous frameworks. The design and synthesis of novel electroactive organic molecules is encouraged towards the construction of functional porous frameworks exhibiting new functions and applications in electronics.  相似文献   

17.
The capacity to create an increasing variety of bioactive molecules that are designed to assemble in specific configurations has opened up tremendous possibilities in the design of materials with an unprecedented level of control and functionality. A particular challenge involves guiding such self-assembling interactions across scales, thus precisely positioning individual molecules within well-organized, highly-ordered structures. Such hierarchical control is essential if peptides and proteins are to serve as both structural and functional building blocks of biomedical materials. To achieve this goal, top-down techniques are increasingly being used in combination with self-assembling systems to reproducibly manipulate, localize, orient and assemble peptides and proteins to form organized structures. In this tutorial review we provide insight into how both standard and novel top-down techniques are being used in combination with peptide or protein self-assembly to create a new generation of functional materials.  相似文献   

18.
Porous crystalline materials such as zeolites, metal–organic frameworks (MOFs) and covalent organic frameworks (COFs) have attracted great interest due to their well-defined pore structures in molecular dimensions. Knowing the atomic structures of porous materials is crucial for understanding their properties and exploring their applications. Many porous materials are synthesized as polycrystalline powders, which are too small for structure determination by X-ray diffraction. Three-dimensional electron diffraction (3DED) has been developed for studying such materials. In this Minireview, we summarize the recent developments of 3DED methods and demonstrate how 3DED revolutionized structural analysis of zeolites, MOFs, and COFs. Zeolites and MOFs whose structures remained unknown for decades could be solved. New approaches for design and targeted synthesis of novel zeolites could be developed. Moreover, we discuss the advances of structural analysis by 3DED in revealing the unique structural features and properties, such as heteroatom distributions, mixed-metal frameworks, structural flexibility, guest–host interactions, and structure transformation.

Three-dimensional electron diffraction is a powerful tool for accurate structure determination of zeolite, MOF, and COF crystals that are too small for X-ray diffraction. By revealing the structural details, the properties of the materials can be understood, and new materials and applications can be designed.  相似文献   

19.
The design and structural frameworks for targeted drug delivery of medicinal compounds and improved cell imaging have been developed with several advantages. However, metal-organic frameworks (MOFs) are supplemented tremendously for medical uses with efficient efficacy. These MOFs are considered as an absolutely new class of porous materials, extensively used in drug delivery systems, cell imaging, and detecting the analytes, especially for cancer biomarkers, due to their excellent biocompatibility, easy functionalization, high storage capacity, and excellent biodegradability. While Zn-metal centers in MOFs have been found by enhanced efficient detection and improved drug delivery, these Zn-based MOFs have appeared to be safe as elucidated by different cytotoxicity assays for targeted drug delivery. On the other hand, the MOF-based heterogeneous catalyst is durable and can regenerate multiple times without losing activity. Therefore, as functional carriers for drug delivery, cell imaging, and chemosensory, MOFs’ chemical composition and flexible porous structure allowed engineering to improve their medical formulation and functionality. This review summarizes the methodology for fabricating ultrasensitive and selective Zn-MOF-based sensors, as well as their application in early cancer diagnosis and therapy. This review also offers a systematic approach to understanding the development of MOFs as efficient drug carriers and provides new insights on their applications and limitations in utility with possible solutions.  相似文献   

20.
This essay discusses some preliminary thoughts on the development of a rational and modular approach for molecular design in soft matter engineering and proposes ideas of structural and functional synthons for advanced functional materials. It echoes the Materials Genome Initiative by practicing a tentative retro-functional analysis(RFA) scheme. The importance of hierarchical structures in transferring and amplifying molecular functions into macroscopic properties is recognized and emphasized. According to the role of molecular segments in final materials, there are two types of building blocks: structural synthon and functional synthon. Guided by a specific structure for a desired function, these synthons can be modularly combined in various ways to construct molecular scaffolds. Detailed molecular structures are then deduced, designed and synthesized precisely and modularly. While the assembled structure and property may deviate from the original design, the study may allow further refinement of the molecular design toward the target function. The strategy has been used in the development of soft fullerene materials and other giant molecules. There are a few aspects that are not yet well addressed:(1) function and structure are not fully decoupled and(2) the assembled hierarchical structures are sensitive to secondary interactions and molecular geometries across different length scales. Nevertheless, the RFA approach provides a starting point and an alternative thinking pathway by provoking creativity with considerations from both chemistry and physics. This is particularly useful for engineering soft matters with supramolecular lattice formation, as in giant molecules, where the synthons are relatively independent of each other.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号