首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of new monocationic iridium(iii) complexes [Ir(C^N)(2)(N^N)]PF(6) with "large-surface"α,α'-diimin ligands N^N (dap = 1,12-diazaperylene, dmedap = 2,11-dimethyl-1,12-diazaperylene, dipdap = 2,11-diisopropyl-1,12-diazaperylene) and different cyclometalating ligands C^N (piq = 1-phenylisoquinoline, bzq = benzo[h]quinoline, ppz = 1-phenylpyrazole, thpy = 2-(2-thienyl)pyridine, ppy = 2-phenylpyridine, meppy = 2-(4-methylphenyl)pyridine, dfppy = 2-(2,4-difluorophenyl)pyridine) were synthesized. The solid structures of the complexes [Ir(piq)(2)(dap)]PF(6), [Ir(bzq)(2)(dap)]PF(6), [Ir(ppy)(2)(dipdap)]PF(6), [Ir(piq)(2)(dmedap)]PF(6), [Ir(ppy)(2)(dap)]PF(6) and [Ir(ppz)(2)(dap)]PF(6) are reported. In [Ir(piq)(2)(dap)]PF(6), the dap ligand and one of the piq ligands of each cationic complex are involved in π-π stacking interactions forming supramolecular channels running along the crystallographic c axis. In the crystalline [Ir(bzq)(2)(dap)]PF(6)π-π stacking interactions between the metal complexes lead to the formation of a 2D layer structure. In addition, CH-π interactions were found in all compounds, which are what stabilizes the solid structure. In particular, a significant number of them were found in [Ir(piq)(2)(dap)]PF(6) and [Ir(bzq)(2)(dap)]PF(6). The crystal structures of [Ir(ppy)(2)(dipdap)]PF(6) and [Ir(ppy)(2)(dmedap)]PF(6) are also presented, being the first examples of bis-cyclometalated iridium(iii) complexes with phenanthroline-type α,α'-diimin ligands bearing bulky alkyl groups in the neighbourhood of the N-donor atoms. These ligands implicate a distorted octahedral coordination geometry that in turn destabilized the Ir-N(N^N) bonds. The new iridium(iii) complexes are not luminescent. All compounds show an electrochemically irreversible anodic peak between 1.15 and 1.58 V, which is influenced by the different cyclometalated ligands. All of the new complexes show two reversible successive one-electron "large-surface" ligand-centred reductions around -0.70 V and -1.30 V. Electrospray ionisation mass spectrometry (ESI-MS) and collision induced decomposition (CID) measurements were used to investigate the stability of the new complexes. Thereby, the stability agreed well with the order of the Ir-N(N^N) bond lengths.  相似文献   

2.
Two novel iridium(III) complexes, [Ir(dfppy)(2)(pmc)] and [Ir(ppy)(2)(pmc)] (dfppy = 2-(4',6'-difluoro-phenyl)pyridine, ppy = 1-phenyl-pyridine), were designed and synthesized using 2-carboxyl-pyrimidine (Hpmc) as an ancillary ligand. Single crystals were obtained and characterized by single crystal X-ray diffraction. The tetrametallic complexes {[(C^N)(2)Ir(μ-pmc)](3)EuCl(3)} (C^N = dfppy, ppy) were synthesized using the iridium(III) complexes as "ligands". Photophysical and theoretical studies indicate that [Ir(dfppy)(2)(pmc)] is more suitable for sensitizing the emission of Eu(III) ions than [Ir(ppy)(2)(pmc)].  相似文献   

3.
An extended study of a novel visible-light-driven water reduction system containing an iridium photosensitizer, an in situ iron(0) phosphine water reduction catalyst (WRC), and triethylamine as sacrificial reductant is described. The influences of solvent composition, ligand, ligand-to-metal ratio, and pH were studied. The use of monodentate phosphine ligands led to improved activity of the WRC. By applying a WRC generated in situ from Fe(3) (CO)(12) and tris[3,5-bis(trifluoromethyl)phenyl]phosphine (P[C(6)H(3)(CF(3))(2)](3), Fe(3)(CO)(12)/PR(3)=1:1.5), a catalyst turnover number of more than 1500 was obtained, which constitutes the highest activity reported for any Fe WRC. The maximum incident photon to hydrogen efficiency obtained was 13.4% (440 nm). It is demonstrated that the evolved H(2) flow (0.23 mmol H(2) h(-1) mg(-1) Fe(3)(CO)(12)) is sufficient to be used in polymer electrolyte membrane fuel cells, which generate electricity directly from water with visible light. Mechanistic studies by NMR spectroscopy, in situ IR spectroscopy, and DFT calculations allow for an improved understanding of the mechanism. With respect to the Fe WRC, the complex [HNEt(3)](+)[HFe(3)(CO)(11)](-) was identified as the key intermediate during the catalytic cycle, which led to light-driven hydrogen generation from water.  相似文献   

4.
Investigations of blue phosphorescent organic light emitting diodes (OLEDs) based on [Ir(2-(2,4-difluorophenyl)pyridine)(2)(picolinate)] (FIrPic) have pointed to the cleavage of the picolinate as a possible reason for device instability. We reproduced the loss of picolinate and acetylacetonate ancillary ligands in solution by the addition of Br?nsted or Lewis acids. When hydrochloric acid is added to a solution of a [Ir(C^N)(2)(X^O)] complex (C^N = 2-phenylpyridine (ppy) or 2-(2,4-difluorophenyl)pyridine (diFppy) and X^O = picolinate (pic) or acetylacetonate (acac)), the cleavage of the ancillary ligand results in the direct formation of the chloro-bridged iridium(III) dimer [{Ir(C^N)(2)(μ-Cl)}(2)]. When triflic acid or boron trifluoride are used, a source of chloride (here tetrabutylammonium chloride) is added to obtain the same chloro-bridged iridium(III) dimer. Then, we advantageously used this degradation reaction for the efficient synthesis of tris-heteroleptic cyclometalated iridium(III) complexes [Ir(C^N(1))(C^N(2))(L)], a family of cyclometalated complexes otherwise challenging to prepare. We used an iridium(I) complex, [{Ir(COD)(μ-Cl)}(2)], and a stoichiometric amount of two different C^N ligands (C^N(1) = ppy; C^N(2) = diFppy) as starting materials for the swift preparation of the chloro-bridged iridium(III) dimers. After reacting the mixture with acetylacetonate and subsequent purification, the tris-heteroleptic complex [Ir(ppy)(diFppy)(acac)] could be isolated with good yield from the crude containing as well the bis-heteroleptic complexes [Ir(ppy)(2)(acac)] and [Ir(diFppy)(2)(acac)]. Reaction of the tris-heteroleptic acac complex with hydrochloric acid gives pure heteroleptic chloro-bridged iridium dimer [{Ir(ppy)(diFppy)(μ-Cl)}(2)], which can be used as starting material for the preparation of a new tris-heteroleptic iridium(III) complex based on these two C^N ligands. Finally, we use DFT/LR-TDDFT to rationalize the impact of the two different C^N ligands on the observed photophysical and electrochemical properties.  相似文献   

5.
Novel phenylazole ligands were applied successfully in the synthesis of cyclometalated iridium(III) complexes of the general formula [Ir(phenylazole)(2)(bpy)]PF(6) (bpy=2,2'-bipyridine). All complexes were fully characterized by NMR, IR, and MS spectroscopic studies as well as by cyclic voltammetry. Three crystal structures obtained by X-ray analysis complemented the spectroscopic investigations. The excited-state lifetimes of the iridium complexes were determined and showed to be in the range of several hundred ns to multiple μs. All obtained iridium complexes were active as photosensitizers in catalytic hydrogen evolution from water in the presence of triethylamine as a sacrificial reducing agent. Applying an in situ formed iron-based water reduction catalyst derived from [HNEt(3)](+) [HFe(3)(CO)(11)](-) and tris[3,5-tris-(trifluoromethyl)-phenyl]phosphine as the ligand, [Ir(2-phenylbenz-oxazole)(2)-(bpy)]PF(6) proved to be the most efficient complex giving a quantum yield of 16% at 440 nm light irradiation.  相似文献   

6.
The ligands 4-methylthio-6-phenyl-2,2'-bipyridine (1) and the corresponding sulfoxide (2) and sulfone (3) have been synthesized and characterized in solution, and in the solid state by single crystal X-ray diffraction. Compounds 2 and 3 crystallize in the same space group (C2/c) with similar unit cell parameters; a small increase in the unit cell volume allows for the presence of the extra oxygen atom in 3. The sulfoxide and sulfone groups adopt conformations that permit intramolecular OHC(aryl) hydrogen bonds. The complexes [Ir(ppy)(2)L][PF(6)] with L = 1, 2 or 3 have been prepared and characterized. The asymmetric sulfur atom in ligand 2 gives rise to pairs of diastereoisomers of the complex which can be distinguished in the (1)H and (13)C NMR spectra. In solution, exchange of [PF(6)](-) by [Δ-TRISPHAT](-) gives rise to four diastereoisomers and we observed good dispersion of (1)H NMR resonances, especially for those assigned to protons close to the asymmetric sulfur atom. A single crystal X-ray diffraction study of 2{[Ir(ppy)(2)(3)][PF(6)]}·CHCl(3)·3H(2)O reveals that the complex crystallizes in the chiral space group P2(1)2(1)2(1), the asymmetric unit containing crystallographically independent Δ- and Λ-[Ir(ppy)(2)(3)](+) cations. This provides a rare example of a so-called kryptoracemate in the solid state. In MeCN solution, [Ir(ppy)(2)(1)][PF(6)], [Ir(ppy)(2)(2)][PF(6)] and [Ir(ppy)(2)(3)][PF(6)] are weakly emissive (λ(em) = 600, 647 and 672 nm, respectively) and preliminary studies of the electroluminescent properties of [Ir(ppy)(2)(2)][PF(6)] indicate that the complexes are not suitable candidates for LECs.  相似文献   

7.
We report the synthesis of π-bonded ruthenium, rhodium, and iridium o-benzoquinones [Cp*M(o-C(6)H(4)O(2))](n) [M = Ru (2), n = 1-; Rh (3), n = 0; Ir (4), n = 0] following a novel synthetic procedure. Compounds 2-4 were fully characterized by spectroscopic methods and used as chelating organometallic linkers, "OM-linkers", toward luminophore bricks such as Ru(bpy)(2)(2+), Rh(ppy)(2)(+), and Ir(ppy)(2)(+) (bpy = 2,2'-bipyridine; ppy = 2-phenylpyridine) for the design of a novel family of octahedral bimetallic complexes of the general formula [(L-L)(2)M(OM-linkers)][X](m) (X = counteranion; m = 0, 1, 2) whose luminescent properties depend on the choice of the OM-linker and the luminophore brick. Thus, dinuclear assemblies such as [(bpy)(2)Ru(2)][OTf] (5-OTf), [(bpy)(2)Ru(2)][Δ-TRISPHAT] (5-ΔT) {TRISPHAT = tris[tetrachlorobenzene-1,2-bis(olato)]phosphate}, [(bpy)(2)Ru(3)][OTf](2) (6-OTf), [(bpy)(2)Ru(4)][OTf](2) (7-OTf), [(bpy)(2)Ru(4)][Δ-TRISPHAT](2) (7-ΔT), [(ppy)(2)Rh(2)] (8), [(ppy)(2)Rh(3)][OTf] (9-OTf), [(ppy)(2)Rh(4)][OTf] (10-OTf), [(ppy)(2)Rh(4)][Δ-TRISPHAT] (10-ΔT), [(ppy)(2)Ir(2)] (11), [(ppy)(2)Ir(3)][OTf] (12-OTf), [(ppy)(2)Ir(4)][OTf] (13-OTf), and [(ppy)(2)Ir(4)][Δ-TRISPHAT] (13-ΔT) were prepared and fully characterized. The X-ray molecular structures of three of them, i.e., 5-OTf, 8, and 11, were determined. The structures displayed a main feature: for instance, the two oxygen centers of the OM-linker [Cp*Ru(o-C(6)H(4)O(2))](-) (2) chelate the octahedral chromophore metal center, whether it be ruthenium, rhodium, or iridium. Further, the carbocycle of the OM-linker 2 adopts a η(4)-quinone form but with some catecholate contribution due to metal coordination. All of these binuclear assemblies showed a wide absorption window that tailed into the near-IR (NIR) region, in particular in the case of the binuclear ruthenium complex 5-OTf with the anionic OM-linker 2. The latter feature is no doubt related to the effect of the OM-linker, which lights up the luminescence in these homo- and heterobinuclear compounds, while no effect has been observed on the UV-visible and emission properties because of the counteranion, whether it be triflate (OTf) or Δ-TRISPHAT. At low temperature, all of these compounds become luminescent; remarkably, the o-quinonoid linkers [Cp*M(o-C(6)H(4)O(2))](n) (2-4) turn on red and NIR phosphorescence in the binuclear octahedral species 5-7. This trend was even more observable when the ruthenium OM-linker 2 was employed. These assemblies hold promise as NIR luminescent materials, in contrast to those made from organic 1,2-dioxolene ligands that conversely are not emissive.  相似文献   

8.
Reactions of [Ir(C^N)(2)Cl](2) [HC^N = 2-(3-R-phenyl)pyridine, 2-(3-R-phenylpyrazole) R = H, Me] with Me(2)-phencat give luminescent complexes [Ir(C^N)(2)(Me(2)-phencat)][PF(6)] (Me(2)-2a, b, c)[PF(6)]. Deprotection of the methoxy groups with BBr(3) is problematic as simultaneous bromination of the cyclometallated phenyl groups occurs. However, deprotection of Me(2)-phencat with BBr(3) followed by complexation with [Ir(C^N)(2)Cl](2) gives luminescent complexes [Ir(C^N)(2)(H(2)-phencat)][PF(6)] (H(2)-3a, c)[PF(6)], which are luminescent sensors for molybdate.  相似文献   

9.
The photophysical and electrochemical properties of the novel complexes [Ir(ppy)(2)(5-X-1,10-phen)][PF(6)] (ppy = 2-phenylpyridine, phen = phenanthroline, X = NMe(2), NO(2)), [Ir(pq)(2)(5-X-1,10-phen)][PF(6)] (pq = 2-phenylquinoline, X = H, Me, NMe(2), NO(2)), [Ir(ppy)2(4-Me,7-Me-1,10-phen)][PF(6)], [Ir(ppy)2(5-Me,6-Me-1,10-phen)][PF(6)], [Ir(ppy)(2)(2-Me,9-Me-1,10-phen)][PF(6)], and [Ir(pq)2(4-Ph,7-Ph-1,10-phen)][PF(6)] have been investigated and compared with those of the known reference complexes [Ir(ppy)(2)(4-Me or 5-H or 5-Me-1,10-phen)][PF(6)] and [Ir(ppy)(2)(4-Ph,7-Ph-1,10-phen)][PF(6)], showing how the nature and number of the phenanthroline substituents tune the color of the emission, its quantum yield, and the emission lifetime. It turns out that the quantum yield is strongly dependent on the nonradiative decay. The geometry, ground state, electronic structure, and excited electronic states of the investigated complexes have been calculated on the basis of density functional theory (DFT) and time-dependent DFT approaches, thus substantiating the electrochemical measurements and providing insight into the electronic origin of the absorption spectra and of the lowest excited states involved in the light emission process. These results provide useful guidelines for further tailoring of the photophysical properties of ionic Ir(III) complexes.  相似文献   

10.
Liu Y  Li M  Zhao Q  Wu H  Huang K  Li F 《Inorganic chemistry》2011,50(13):5969-5977
Phosphorescent iridium(III) complexes have been attracting increasing attention in applications as luminescent chemosensors. However, no instance of an iridium(III) complex being used as a molecular logic gate has hitherto been reported. In the present study, two iridium(III) complexes, [Ir(ppy)(2)(PBT)] and [Ir(ppy)(2)(PBO)], have been synthesized (PBT, 2-(2-Hydroxyphenyl)-benzothiazole; PBO, 2-(2-hydroxyphenyl)-benzoxazole), and their chemical structures have been characterized by single-crystal X-ray analysis. Theoretical calculations and detailed studies of the photophysical and electrochemical properties of these two complexes have shown that the N^O ligands dominate their luminescence emission properties. Moreover, [Ir(ppy)(2)(PBT)], containing a sulfur atom in the N^O ligand, can serve as a highly selective chemodosimeter for Hg(2+) with ratiometric and naked-eye detection, which is associated with the dissociation of the N^O ligand PBT from the complex. Furthermore, complex [Ir(ppy)(2)(PBT)] has been further developed as an AND and INHIBIT logic gate with Hg(2+) and histidine as inputs.  相似文献   

11.
The C≡C-linkage of Pt(PR(3))(2)(C≡CAr)(2) with (C^N)(2)Ir(N^N)(+) (C^N = 2-phenylpyridine; N^N = bipyridyl) leads to hetero-bi- and trimetallic species exhibiting photophysical properties reminiscent of both [Pt]- and [Ir]-containing moieties through the generation of a [Pt] → [Ir] charge transfer excited state.  相似文献   

12.
The chloro-bridged rhodium and iridium complexes [M2(BTSE)2Cl2] (M = Rh 1, Ir 2) bearing the chelating bis-sulfoxide tBuSOC2H4SOtBu (BTSE) were prepared by the reaction of [M2(COE)4Cl2] (M = Rh, Ir; COE = cyclooctene) with an excess of a racemic mixture of the ligand. The cationic compounds [M(BTSE)2][PF6] (M = Rh 3, Ir 4), bearing one S- and one O-bonded sulfoxide, were also obtained in good yields. The chloro-bridges in 2 can be cleaved with 2-methyl-6-pyridinemethanol and 2-aminomethyl pyridine, resulting in the iridium(I) complexes [Ir(BTSE)(Py)(Cl)] (Py = 2-methyl-6-pyridinemethanol 5, 2-aminomethyl-pyridine 6). In case of the bulky 2-hydroxy- isopropyl-pyridine, selective OH oxidative addition took place, forming the Ir(III)-hydride [Ir(BTSE)(2-isopropoxy-pyridine)(H)(Cl)] 7, with no competition from the six properly oriented C-H bonds. The cationic rhodium(I) and iridium(I) compounds [M(BTSE)(2-aminomethyl-pyridine)][X] (M = Rh 8, Ir 10), [Rh(BTSE)(2-hydroxy- isopropyl-pyridine)][X] 9(stabilized by intramolecular hydrogen bonding), [Ir(BTSE)(pyridine)2][PF6] 12, [Ir(BTSE)(alpha-picoline)2][PF6] 13, and [Rh(BTSE)(1,10-phenanthroline)][PF6] 14 were prepared either by chloride abstraction from the dimeric precursors or by replacement of the labile oxygen bonded sulfoxide in 3 or 4. Complex 14 exhibits a dimeric structure in the solid state by pi-pi stacking of the phenanthroline ligands.  相似文献   

13.
The syntheses and study of the spectroscopic, redox, and photophysical properties of a new set of species based on Ir(III) cyclometalated building blocks are reported. This set includes three dinuclear complexes, that is, the symmetric (with respect to the bridging ligand) diiridium species [(ppy)(2)Ir(mu-L-OC(O)-C(O)O-L)Ir(ppy)(2)][PF(6)](2) (5; ppy = 2-phenylpyridine anion; L-OC(O)-C(O)O-L = bis[4-(6'-phenyl-2,2'-bipyridine-4'-yl)phenyl]-benzene-1,4-dicarboxylate), the asymmetric diiridium species [(ppy)(2)Ir(mu-L-OC(O)-L)Ir(ppy)(2)][PF(6)](2) (3; L-OC(O)-L = 4-([(6'-phenyl-2,2'-bipyridine-4'-yl)benzoyloxy]phenyl)-6'-phenyl-2,2'-bipyridine), and the mixed-metal Ir-Re species [(ppy)(2)Ir(mu-L-OC(O)-L)Re(CO)(3)Br][PF(6)] (4). Syntheses, characterization, and spectroscopic, photophysical, and redox properties of the model mononuclear compounds [Ir(ppy)(2)(L-OC(O)-L)][PF(6)] (2) and [Re(CO)(3)(L-COOH)Br] (6; L-COOH = 4'-(4-carboxyphenyl)-6'-phenyl-2,2'-bipyridine) are also reported, together with the syntheses of the new bridging ligands L-OC(O)-L and L-OC(O)-C(O)O-L. The absorption spectra of all the complexes are dominated by intense spin-allowed ligand-centered (LC) bands and by moderately intense spin-allowed metal-to-ligand charge-transfer (MLCT) bands. Spin-forbidden MLCT absorption bands are also visible as low-energy tails at around 470 nm for all the complexes. All the new species exhibit metal-based irreversible oxidation and bipyridine-based reversible reduction processes in the potential window investigated (between +1.80 and -1.70 V vs SCE). The redox behavior indicates that the metal-based orbitals are only weakly interacting in dinuclear systems, whereas the two chelating halves of the bridging ligands exhibit noticeable electronic interactions. All the complexes are luminescent both at 77 K and at room temperature, with emission originating from triplet MLCT states. The luminescence properties are temperature- and solvent-dependent, in accord with general theories: emission lifetimes and quantum yields increase on passing from acetonitrile to dichloromethane fluid solution and from room-temperature fluid solution to 77 K rigid matrix. In the dinuclear mixed-chromophore species 3 and 4, photoinduced energy transfer across the ester-linked bridging ligands seems to occur with low efficiency.  相似文献   

14.
The complex [Ir(ppy)(2)(pphen)][PF(6)] (Hppy = 2-phenylpyridine, pphen = 2-phenyl-1,10-phenanthroline) has been prepared and evaluated as an electroluminescent component for light-emitting electrochemical cells (LECs). Like in analogous LECs using bpy-based iridium(III) complexes a significant enhancement of the device stability is observed.  相似文献   

15.
Five iridium bis(carbene) complexes, [Ir(pmi)(2)(pypz)] (1), [Ir(mpmi)(2)(pypz)] (2), [Ir(fpmi)(2)(pypz)] (3), [Ir(fpmi)(2)(pyim)] (4), and [Ir(fpmi)(2)(tfpypz)] (5) (pmi=1-phenyl-3-methylimdazolin-2-ylidene-C,C(2'); fpmi=1-(4-fluorophenyl)-3-methylimdazolin-2-ylidene-C,C(2'); mpmi=1-(4-methyl-phenyl)-3-methylimdazolin-2-ylidene-C,C(2'); pypz=2-(1H-pyrazol-5-yl)pyridinato; pyim=2-(1H-imidazol-2-yl)pyridinato; and tfpypz=2-(3-(trifluoromethyl)-1H-pyrazol-5-yl)pyridinato), were synthesized and their structures were characterized by NMR spectroscopy, mass spectroscopy and X-ray diffraction. These complexes showed phosphorescent emission with the emission maxima between 453 and 490 nm. Various spectrophotometric measurements, cyclic voltammetric studies, and density functional theory (DFT) calculations show that, unlike most of the phosphorescent cyclometalated iridium complexes, the lowest unoccupied molecular orbital (LUMO) energy and the emissive state of these iridium complexes are mainly controlled by the N,N'-heteroaromatic (N^N) ligand. Despite the fact that the LUMO levels of these complexes are mainly on the N^N ligands, the efficiencies of the electroluminescent (EL) devices are very high. For example, the EL devices using [Ir(mpmi)(2)(pypz)], [Ir(fpmi)(2)(pypz)], and [Ir(fpmi)(2)(tfpypz)] as the dopant emitters exhibited light- to deep-blue electrophosphorescence with external quantum efficiencies of 15.2, 14.1, and 7.6% and Commission Internationale d'énclairage (x,y) coordinates (CIE(x,y)) of (0.14, 0.27), (0.14, 0.18) and (0.14, 0.10), respectively.  相似文献   

16.
The first neutral, [IrClF(2)(NHC)(COD)] and [IrClF(2)(CO)(2)(NHC)] (NHC = IMes, IPr), and cationic, [IrF(2)py(IMes)(COD)][BF(4)] and [IrF(2)L(CO)(2)(NHC)][BF(4)] (NHC = IMes, L = PPh(2)Et, PPh(2)CCPh, py; NHC = IPr, L = py), NHC iridium(III) fluoride complexes, have been synthesised by the xenon difluoride oxidation of iridium(I) substrates. The stereochemistries of these iridium(III) complexes have been confirmed by multinuclear NMR spectroscopy in solution and no examples of fluoride-trans-NHC arrangements were observed. Throughout, CO was found to be a better co-ligand for the stabilisation of the iridium(III) fluoride complexes than COD. Attempts to generate neutral trifluoroiridium(III) complexes, [IrF(3)(CO)(NHC)], via the ligand substitution reaction of [IrF(3)(CO)(3)] with the free NHCs were unsuccessful.  相似文献   

17.
A new series of iridium(III) mixed ligand complexes TBA[Ir(ppy)(2)(CN)(2)] (1), TBA[Ir(ppy)(2)(NCS)(2)] (2), TBA[Ir(ppy)(2)(NCO)(2)] (3), and [Ir(ppy)(2)(acac)] (4) (ppy = 2-phenylpyridine; acac = acetoylacetonate, TBA = tetrabutylammonium cation) have been developed and fully characterized by UV-vis, emission, IR, NMR, and cyclic voltammetric studies. The lowest energy MLCT transitions are tuned from 463 to 494 nm by tuning the energy of the HOMO levels. These complexes show emission maxima in the blue, green, and yellow region of the visible spectrum and exhibit unprecedented phosphorescence quantum yields, 97 +/- 3% with an excited-state lifetimes of 1-3 micros in dichloromethane solution at 298 K. The near-unity quantum yields of these complexes are related to an increased energy gap between the triplet emitting state and the deactivating e(g) level that have been achieved by meticulous selection of ligands having strong ligand field strength. Organic light-emitting devices were fabricated using the complex 4 doped into a purified 4,4'-bis(carbazol-9-yl)biphenyl host exhibiting a maximum of the external quantum efficiencies of 13.2% and a power efficiency of 37 lm/W for the 9 mol % doped system.  相似文献   

18.
联吡啶Ir(Ⅲ)配合物电子结构及光谱性质的理论研究   总被引:1,自引:0,他引:1  
采用密度泛函理论(DFT)对配合物Ir(ppy)2(N^N)+ [ppy=2-phenylpyrine, N^N=bpy= 2,2’-bipyridine(1); N^N=H2dcbpy=4.4’-dicarboxy-2,2’-bipyridine(2), N^N=Hcmbpy=4-carboxy-4’-methyl-2,2’-bipyridine(3)] 的基态和激发态几何构型进行优化, 通过TDDFT/B3LYP方法得到这些化合物在乙腈溶液中的吸收光谱和磷光发射光谱及其跃迁性质. 研究结果表明, 化合物1 (384 nm), 2(433 nm)和3 (413 nm) 最低的吸收谱被指认为MLCT/LLCT[dIr+π(ppy)→π*(N^N)]电荷跃迁. 化合物1(486 nm), 2(576 nm)和3 (567 nm)最低的磷光发射可以描述为[dIr+π(ppy)]→[π*(N^N)]跃迁. 这是由于联吡啶配体上吸电子基团的引入, 稳定了相应的空轨道, 导致了化合物2和3的吸收和发射光谱红移. 同时, 化合物非线性光学性质的计算结果表明, 三种化合物均具有较大的一阶超极化率(β), 联吡啶配体中吸电子基团的增加, 使得分子内电子转移增强, 导致一阶超极化率增大.  相似文献   

19.
Eum MS  Chin CS  Kim SY  Kim C  Kang SK  Hur NH  Seo JH  Kim GY  Kim YK 《Inorganic chemistry》2008,47(14):6289-6295
Newly prepared hydrido iridium(III) complexes [Ir(ppy)(PPh3)2(H)L](0,+) (ppy = bidentate 2-phenylpyridinato anionic ligand; L = MeCN (1b), CO (1c), CN(-) (1d); H being trans to the nitrogen of ppy ligand) emit blue light at the emission lambda(max) (452-457, 483-487 nm) significantly shorter than those (468, 495 nm) of the chloro complex Ir(ppy)(PPh3)2(H)(Cl) (1a). Replacing ppy of 1a-d with F2ppy (2,4-difluoro-2-phenylpyridinato anion) and F2Meppy (2,4-difluoro-2-phenyl-m-methylpyridinato anion) brings further blue-shifts down to the emission lambda(max) at 439-441 and 465-467 nm with CIE color coordinates being x = 0.16 and y = 0.18-0.20 to display a deep-blue photoemission. No significant blue shift is observed by replacing PPh3 of 1a with PPh2Me to produce Ir(ppy)(PPh2Me)2(H)(Cl) (1aPPh 2Me), which displays emission lambda max at 467 and 494 nm. The chloro complexes, [Ir(ppy)(PPh3)2(Cl)(L)](0,+) (L = MeCN (2b), CO (2c), CN(-) (2d)) having a chlorine ligand trans to the nitrogen of ppy also emit deep-blue light at emission lambda(max) 452-457 and 482-487 nm.  相似文献   

20.
Bis-cyclometalated iridium(iii) complexes [Ir(F(2)ppy)(2)] (), [Ir(F(2)CNppy)(2)] (), [Ir(DMAF(2)ppy)(2)] () and [Ir(MeOF(2)ppy)(2)] () (F(2)ppy = 4',6'-difluoro-2-phenylpyridinate, F(2)CNppy = 5'-cyano-4',6'-difluoro-2-phenylpyridinate, DMAF(2)ppy = 4',6'-difluoro-4-dimethylamino-2-phenylpyridinate, MeOF(2)ppy = 4',6'-difluoro-4-methyl-2-phenylpyridinate and = 3,5-dimethylpyrazole-N-carboxamide) emitting in the sky blue region were synthesized. We studied the effect of the ancillary ligand and the substituents on the cyclometalating ligands on the crystal structures, photophysical and electrochemical properties and the frontier orbitals. Density functional theory (DFT) calculation results indicate that in and the cyclometalating ligands show negligible participation in the HOMO, the ancillary ligand being the main participant along with the Ir(iii) d-orbitals. exhibits the maximum photoluminescence quantum efficiency and radiative emission rates along with the dominant low frequency metal-ligand vibrations and maximum reorganization energy in the excited state. All the substituted complexes show more polar characteristics than , possessing the highest dipole moment among the complexes. The performances of the solution-synthesised organic light emitting devices (OLEDs) of , and doped in a blend of mCP (m-bis(N-carbazolylbenzene)) and polystyrene are studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号