首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent theoretical investigations of the radical/π-bond addition between single-ring aromatic hydrocarbons highlight the importance of this category of reactions for the formation of PAH intermediates and soot. The present investigation extends the theory of the radical/π-bond addition reactions to the o-benzyne + cyclic C(5) hydrocarbons systems. The calculations, performed using the uB3LYP/6-311+G(d,p) method, have addressed the possible role of the reaction between o-benzyne and cyclopentadiene in the formation of indene through the fragmentation of the bicyclo intermediate benzonorbornadiene. The complex potential energy surface for the reaction between o-benzyne and cyclopentadienyl radical was also investigated. In this case, the formation of the bicyclo benzonorbornadienyl radical and its subsequent fragmentation to indenyl radical and acetylene is not the main reaction pathway, although it could be relevant at relatively high temperatures. At lower temperatures, the isomerization reactions, which lead to the formation of a variety of multiring compounds, are dominant.  相似文献   

2.
After the separation of the donor, the aeceptor, and the σ-type bridge from the π-σ-π system, the geometries of biphenyl, biphenyl anion radical, naphthalene, and naphthalene anion radical are optimized, and then the reorganization energy for the intermolecular electron transfer (ET) at the levels of HF/4-31G and HF/DZP is calculated. The ET matrix elements of the self-exchange reactions of the π-σ-π systems have been calculated by means of both the direct calculation based on the variational principle, and the transition energy between the molecular orbitals at the linear coordinate R=0.5. For the cross reactions, the ET matrix element and the geometry of the transition state are determined by searching the minimum energy splitting △_(min) along the reaction coordinate. In the evaluation of the solvent reorganization energy of the ET in solution, the Marcus' two-sphere model has been invoked. A few of ET rate constants for the intramolecular ET reactions for the π-σ-π systems, which contain  相似文献   

3.
The mechanisms of CH2I with NO2 reaction were investigated on the singlet and triplet potential energy surfaces (PESs) by the UB3LYP method. The energetic information is further refined at the UCCSD(T) and UQCISD(T) levels of theory. Our results indicated that the title reaction is more favorable on the singlet PES thermodynamically, and less competitive on the triplet one. On the singlet PES, the title reaction is most likely to be initiated by the carbon-to-oxygen approach forming the adduct IM1 (H2ICONO-trans) without any transition state, which can isomerizes to IM2 (H2ICNO2) and IM3 (H2ICONO-cis), respectively. The most feasible pathway is the 1, 3-I shift with C–I and O–N bonds cleavage along with the N–I bond formation of IM1 lead to the product P1 (CH2O + INO), which can further dissociate to give P3 (CH2O + I + NO). The competitive pathway is 1, 3-H shift associated with O–N bond rupture of IM1 to form P2 (CHIO + HNO). The theoretically obtained major product CH2O and adducts IM1 and IM2 are in good agreement with the kinetic detection in experiment. The similarities and discrepancies between CH2I + NO2 and CH2Br + NO2 reactions are discussed in terms of the electronegativity of halogen atom and the barrier height of the rate-determining process. The present study may be helpful for further experimental investigation of the title reaction.  相似文献   

4.
5.
In this work, the perfluorobenzene-bonded silica sorbent was tested to adsorb polycyclic aromatic hydrocarbons in hexane. In the comparison experiments, the perfluorobenzene-bonded sorbent's performance was better than octadecyl silica sorbent and phenyl-bonded silica sorbents, which indicated that the π-hole···π bonds between perfluorobenzene and the polycyclic aromatic hydrocarbons were stronger than π···π interactions and hydrophobic interactions in hexane. Then the perfluorobenzene-bonded silica sorbent was applied to solid-phase extraction of 15 polycyclic aromatic hydrocarbons from the hexane extracts of soil samples directly without the solvent replacement, which simplified the soil pretreatment process. And the results showed that under the optimal conditions, the proposed method for the determination of polycyclic aromatic hydrocarbons in the environment soil presented good recoveries and stabilities for the 10 heavier polycyclic aromatic hydrocarbons with the recoveries ranging from 75.1% to 104.6% and the relative standard deviations being in the range of 1.4%–5.8%. The limits of detection of the method varied from 0.1 to 2 ng/g. This work reveals the great application potential of the π-hole bond as a new retention mechanism in the field of solid-phase extraction.  相似文献   

6.
An equimolar mixture of naphthalene and amorphous heptakis-(2,6-di-O-methyl)--cyclodextrin (DMCD) was heated at 70 or 90°C in a sealed container. After heating ffor 15 min at 90°C, the mixture was crystallized to show an excimer fluorescence of naphthalene, and the fluorescence spectrum changed to a monomer emission by further prolongation of heating time, accompanied by a slight change in its powder X-ray diffractogram. It is suggested that a metastable complex showing the excimer emission of naphthalene was transformed to a stable complex showing the monomer emission. The mixing molar ratio of naphthalene to DMCD was also found to affect the transformation temperature of the complex.  相似文献   

7.
《Tetrahedron letters》1987,28(21):2417-2420
Kinetic evidence is offered in support of π-complex formation and slow conversion to σ-complex during the electrophilic molecular chlorination reaction of six aromatic hydrocarbons.  相似文献   

8.
The radical addition reactivity of tert-butyl α-trifluoromethylacrylate (CH2C(CF3)COOC(CH3)3) (BFMA) with cyclic ethers was investigated in order to compare to that of perfluoroisopropenyl ester. One to one addition compound of BFMA with tetrahydrofuran (THF) was produced in fairy high yields in the presence of 2,2′-azobisisobutyronitrile, benzoyl peroxide or di-tert-butyl peroxide to give 2-substituted THF derivative. Time-conversion investigation showed much higher reactivity of BFMA compared to that of 2-benzoxypentafluoropropene [CF2C(CF3)OCOC6H5]. Radical additions of BFMA with 1,4-dioxane, 1,3-dioxolane and tetrahydropyran were also examined to afford corresponding 1:1 addition products in fairly high yields by achieving carbon-carbon bond formation. It is then concluded that no interconversion of fluoroalkylcarbon radical and hydrocarbon radical may take place in the reaction system of BFMA which possesses two less fluorines in the vinyl group compared to 2-benzoxypentafluoropropene. The method may be a facile way to prepare trifluoromethyl-substituted organic compounds accompanied by the formation of carbon-carbon bonds by the aid of fluorine atoms.  相似文献   

9.
The reaction mechanism and kinetics for the abstraction of hydrogen and addition of hydroxyl radical (OH) to 2′-deoxycytidine have been studied using density functional theory at MX06-2X/6-311+G(d,p) level in aqueous solution. The optimized geometries, energies, and thermodynamic properties of all stationary points along the hydrogen abstraction reaction and the addition reaction pathways are calculated. The single-point energy calculations of the main pathways at CCSD(T)/6-31+G(d,p)//MX06-2X/6-311+G(d,p) level are performed. The rate constants and the branching ratios of different channels are evaluated using the canonical variational transition (CVT) state theory with small-curvature tunneling (SCT) correction in aqueous solution to simulate the biological system. The branching ratios of hydrogen abstraction from the C1′ site and the C5′ site and OH radical addition to the C5 site and the C6 site are 57.27% and 12.26% and 23.85% and 5.69%, respectively. The overall calculated rate constant is 4.47?×?109 dm3 mol?1 s?1 at 298 K which is in good agreement with experiments. The study could help better understand reactive oxygen species causing DNA oxidative damage.  相似文献   

10.
The (liquid + liquid) equilibrium data (LLE) for the extraction of toluene from heptane with different ionic liquids (ILs) based on the alkylsulfate anion (R-SO4) was determined at T = 313.2 K and atmospheric pressure. The effect of more complex R-SO4 anions on capacity of extraction and selectivity in the liquid–liquid extraction of toluene from heptane was studied. The ternary systems were formed by {heptane + toluene + 1,3-dimethylimidazolium methylsulfate ([mmim][CH3SO4]), 1-ethyl-3-methylimidazolium hydrogensulfate ([emim][HSO4]), 1-ethyl-3-methylimidazolium methylsulfate ([emim][CH3SO4]), or 1-ethyl-3-methylimidazolium ethylsulfate ([emim][C2H5SO4])}. The degree of quality of the experimental LLE data was ascertained by applying the Othmer–Tobias correlation. The phase diagrams for the ternary systems were plotted, and the tie lines correlated with the NRTL model compare satisfactorily with the experimental data.  相似文献   

11.
The valence π → π * excited states of anthracene and naphthacene are studied with multireference perturbation theory with complete active space self-consistent field reference functions. The predicted spectra provide a consistent assignment of all one- and two-photon spectra and T-T spectra of low-lying valence π → π * excited states of anthracene and naphthacene. The present theory predicts the valence π → π * excitation energies with an accuracy of 0.15 eV for anthracene and of 0.25 eV or better for naphthacene. The excited states of anthracene and naphthacene are compared with those of benzene and naphthalene studied previously. The present calculations predict that, going from anthracene to naphthacene, there is a symmetry reversal of the two lowest singlet state transitions, but not for the triplet, just as indicated by the experimental data. Some general trends of polyacene excited states are discussed based on the calculated results for benzene to naphthacene. Conclusive results obtained for anthracene and naphthacene can be used as a model for understanding the excited states of larger polyacenes. Received: 22 April 1998 / Accepted: 6 July 1998 / Published online: 28 September 1998  相似文献   

12.
Summary The retention behaviour of a group of polycyclic aromatic hydrocarbons having nearly equal ionization potentials but different molecular polarizability values was investigated by reversed-phase HPLC and gas chromatography, using -cyclodextrin as a selective inclusion reagent. In HPLC, the cyclodextrin was applied as an additive to the ethanolwater binary mobile phase, while in gas chromatography -cyclodextrin served as the stationary phase coated on an inert support. The relationships between the capacity factors, molecular polarizabilities and the shape parameter of solute molecules is discussed.  相似文献   

13.
14.
The experimental activation energies of the R + O = CR1R2 and RO + CH2 = CHR1 addition reactions are analyzed within the framework of the parabolic model of the bimolecular addition reaction. The activation energy also depends on the dissociation energy of the forming C-O bond and on the reaction enthalpy: the higher the dissociation energy, the higher the activation energy. The empirical relationshipr e J..D e = 0.97 x 10-13 m kJ.-1 mol is found for H, Cl, Br and RO radical addition to multiple C=C and C=O bonds (re is the distance between the peaks of the intersecting parabolic curves). This is due to the effect of the triplet repulsion on radical addition. The interaction of polar groups and the steric effect also influence the activation energy.  相似文献   

15.
16.
17.
This article first revises graph-theoretical (local aromaticity and overall molecular) indices, introduced by M. Randi? in 1975, for benzenoid hydrocarbons and somewhat improves them for computer enumeration. This goes beyond total Kekulé structure enumeration, yielding an index calculation useful for the quantitative estimation of localization of different Kekuléan substructures (including ethylene-, benzene-, annulene-, and radialene-units). This may be viewed as a "molecules-in molecule" approach to polycyclic aromatic hydrocarbons within the context of graph theoretical partitioning.  相似文献   

18.
Degradation of anomeric phenyl d-glucosides to levoglucosan under basic condition is theoretically studied. MP4(SDQ)//DFT(B3LYP)-computational results indicate that the degradation of phenyl α-glucoside (R(α)) occurs via the S(N)icB mechanism. In this mechanism, the oxyanion at the C6, which is formed through deprotonation of the OH group, directly attacks the anomeric carbon. On the other hand, the degradation of phenyl β-glucoside (R(β)) occurs via the S(N)icB(2) mechanism. In this mechanism, the oxyanion at the C2 attacks the anomeric carbon in a nucleophilic manner to afford 1,2-anhydride intermediate and then the oxyanion at the C6 attacks the anomeric carbon to afford levoglucosan. The activation barrier is much lower in the reaction of R(β) (ΔG(0++) = 25.6 kcal/mol and E(a) = 26.5 kcal/mol) than in the reaction of R(α) (ΔG(0++) = 38.1 kcal/mol and E(a) = 37.2 kcal/mol), which is consistent with the experimental observation that β-glucoside is generally much more reactive than the corresponding α-glucoside. The lower activation barrier of the reaction of R(β) arises from the stereoelectronic effect, which is induced by the charge transfer from the ring oxygen to the anomeric carbon, and the staggered conformation around the C1-C2 bond. When the stereoelectronic effect is absent, the degradation needs larger activation energy; for instance, the degradation of phenyl 5a-carba-β-d-glucoside (R(Cβ)) occurs with large ΔG(0++) and E(a) values like those of α-glucosides, because the methylene group of R(Cβ) does not contribute to the stereoelectronic effect. Also, the conformation around the C1-C2 bond is staggered in the transition state of the R(β) reaction but eclipsed in that of the R(α) reaction, which also leads to the larger reactivity of R(β).  相似文献   

19.
Toward the goal of gaining further insight into carbocation-π interactions, bridged-ring aromatic alkene model systems are being investigated in which one isomer will permit π complexation of an intramolecular tertiary carbocation with a benzene ring, but the other isomer will not. The syntheses of three sets of such isomers, having, respectively, benzobicyclo[3.2.1]octene, benzobicyclo[2.2.1]heptene, and benzobicyclo[4.2.1]nonene structures, are described.  相似文献   

20.
《Mendeleev Communications》2023,33(2):252-254
A theoretical study on the mechanism of conversion of 3-bromo-4-methylbenzonitrile into 4-methyl-3-phenylbenzo-nitrile in the course of the Suzuki–Miyaura and Hiyama−Denmark cross-coupling reactions has been performed at Cam-B3LYP-D3 level of theory. With the use of Pd–NHC type complex as the catalyst, the Hiyama−Denmark cross-coupling is best suited for this process from both thermodynamic and kinetic aspects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号