首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
[2]Rotaxanes based on the 1,2-bis(pyridinium)ethane subset[24]crown-8 ether motif were prepared that contain a terminal terpyridine group for coordination to a transition-metal ion. These rotaxane ligands were utilized in the preparation of a series of heteroleptic [Ru(terpy)(terpy-rotaxane)]2+ complexes. The compounds were characterized by 1D and 2D 1H NMR spectroscopy, X-ray crystallography, and high-resolution electrospray ionization mass spectrometry. The effect of using a rotaxane as a ligand was probed by UV/Vis/NIR absorption and emission spectroscopy of the Ru(II) complexes. In contrast with the parent [Ru(terpy)(2)]2+ complex, at room temperature the examined complexes exhibit a luminescence band in the near infrared region and a relatively long lived triplet metal-to-ligand charge-transfer (3MLCT) excited state, owing to the presence of strong-electron-acceptor pyridinium substituents on one of the two terpy ligands. Visible-light excitation of the Ru-based chromophore in acetonitrile at room temperature causes an electron transfer to the covalently linked 4,4'-bipyridinium unit and the quenching of the MLCT luminescence. The 3MLCT excited state, however, is not quenched at all in rigid matrix at 77 K. The rotaxane structure was found to affect the absorption and luminescence properties of the complexes. In particular, when a crown ether surrounds the cationic axle, the photoinduced electron-transfer process is slowed down by a factor from 2 to 3. Such features, together with the synthetic and structural advantages offered by [Ru(terpy)2]2+-type complexes compared to, for example, [Ru(bpy)3]2+-type compounds, render these rotaxane-metal complexes promising candidates for the construction of photochemical molecular devices with a wire-type structure.  相似文献   

2.
A palladium-catalyzed Stille coupling reaction was employed as a versatile method for the synthesis of a novel terpyridine-pincer (3, TPBr) bridging ligand, 4'-{4-BrC6H2(CH2NMe2)2-3,5}-2,2':6',2' '-terpyridine. Mononuclear species [PdX(TP)] (X = Br, Cl), [Ru(TPBr)(tpy)](PF6)2, and [Ru(TPBr)2](PF6)2, synthesized by selective metalation of the NCNBr-pincer moiety or complexation of the terpyridine of the bifunctional ligand TPBr, were used as building blocks for the preparation of heterodi- and trimetallic complexes [Ru(TPPdCl)(tpy)](PF6)2 (7) and [Ru(TPPdCl)2](PF6)2 (8). The molecular structures in the solid state of [PdBr(TP)] (4a) and [Ru(TPBr)2](PF6)2 (6) have been determined by single-crystal X-ray analysis. Electrochemical behavior and photophysical properties of the mono- and heterometallic complexes are described. All the above di- and trimetallic Ru complexes exhibit absorption bands attributable to (1)MLCT (Ru --> tpy) transitions. For the heteroleptic complexes, the transitions involving the unsubstituted tpy ligand are at a lower energy than the tpy moiety of the TPBr ligand. The absorption bands observed in the electronic spectra for TPBr and [PdCl(TP)] have been assigned with the aid of TD-DFT calculations. All complexes display weak emission both at room temperature and in a butyronitrile glass at 77 K. The considerable red shift of the emission maxima relative to the signal of the reference compound [Ru(tpy)2]2+ indicates stabilization of the luminescent 3MLCT state. For the mono- and heterometallic complexes, electrochemical and spectroscopic studies (electronic absorption and emission spectra and luminescence lifetimes recorded at room temperature and 77 K in nitrile solvents), together with the information gained from IR spectroelectrochemical studies of the dimetallic complex [Ru(TPPdSCN)(tpy)](PF6)2, are indicative of charge redistribution through the bridging ligand TPBr. The results are in line with a weak coupling between the {Ru(tpy)2} chromophoric unit and the (non)metalated NCN-pincer moiety.  相似文献   

3.
The synthesis of new ruthenium(II) terpyridine bipyridine complexes bearing a phosphorus(III) ligand is presented. The steric and electronic properties of the phosphorus ligand were varied using aminophosphines, alkyl and aryl phosphites and the bulky tri(isopropyl)phosphine. All complexes were characterized by multi-nuclear NMR spectroscopy, mass spectrometry and X-ray diffraction analysis. The electronic properties of the complexes were probed by cyclic voltammetry, absorption and luminescence spectroscopy. The complexes do not show luminescence at room temperature, whereas at 77 K in an alcoholic matrix, emission is observed in the range 600-650 nm with lifetimes of 3.5-5.5 micros, originating from 3MLCT states. The MLCT transition spans over 65 nm, which corresponds to a variation of 0.4 eV in the HOMO-LUMO gap. The oxidation potential of the ruthenium varies over a broad range of 290 mV, from +1.32 V vs. SCE with L = PiPr3 to +1.61 V vs. SCE with L = P(OPh)3. This range is unprecedented upon the variation of a single monodentate ligand coordinated by the same heteroatom in the same oxidation and charge states. This work underlines the specific capacity of phosphorus in bringing up a large variety of electronic properties by changing its substituents.  相似文献   

4.
We describe the synthesis, electrochemistry, and photophysical properties of several Ru(II) complexes bearing different numbers of pyrenylethynylene substituents in either the 5- or 5,5'-positions of 2,2'-bipyridine, along with the appropriate Ru(II) model complexes bearing either bromo- or ethynyltoluene functionalities. In addition, we prepared and studied the photophysical behavior of the diimine ligands 5-pyrenylethynylene-2,2'-bipyridine and 5,5'-dipyrenylethynylene-2,2'-bipyridine. Static and dynamic absorption and luminescence measurements reveal the nature of the lowest excited states in each molecule. All model Ru(II) complexes are photoluminescent at room temperature and exhibit excited-state behavior consistent with metal-to-ligand charge transfer (MLCT) characteristics. In the three Ru(II) molecules bearing multiple pyrenylethynylene substituents, there is clear evidence that the lowest excited state is triplet intraligand (3IL)-based, yielding long-lived room temperature phosphorescence in the red and near IR. This phosphorescence emanates from either 5-pyrenylethynylene-2,2'-bipyridine or 5,5'-dipyrenylethynylene-2,2'-bipyridine, depending upon the composition of the coordination compound. In the former case, the excited-state absorption difference spectra that were measured for the free ligand are easily superimposed with those obtained for the metal complexes coordinated to either one or two of these species. The latter instance is slightly complicated since coordination of the 5,5'-ligand to the Ru(II) center planarizes the diimine structure, leading to an extended conjugation on the long axis with a concomitant red shift of the singlet pi-pi absorption transitions and the observed room temperature phosphorescence. As a result, transient absorption measurements obtained using free 5,5'-dipyrenylethynylene-2,2'-bipyridine show a marked blue shift relative to its Ru(II) complex, and this extended pi-conjugation effect was confirmed by coordinating this ligand to Zn(II) at room temperature. In essence, all three pyrenylethynylene-containing Ru(II) complexes are unique in this genre of chromophores since the lowest excited state is 3IL-based at room temperature and at 77 K, and there is no compelling evidence of interacting or equilibrated excited states.  相似文献   

5.
Lanthanide complexes with benzothiazole derivatives (Btz-R, R = OCH(3) and OH) and terpyridine (tpy) ligands were synthesized, and their photophysical properties were precisely investigated. The free Btz-OCH(3) ligand in toluene, excited with UV light, produced the normal emission bands around 410 nm, whereas Btz-OH produced a strong excited-state intramolecular proton transfer (ESIPT) band at 510 nm. The Ln(III) complexes (Ln = Nd, Er, and Yb) exhibited sensitized near-IR luminescence when the Btz-R ligands were excited. The sensitized luminescence quantum yields (Phi(Ln)) of the lanthanide complexes were markedly enhanced by ESIPT: for [Nd(Btz-R)(tpy)] in toluene solution, Phi(Ln) = 0.04% for Btz-OCH(3) and 0.39% for Btz-OH. The sensitized luminescence of the Er(III) complexes (Phi(Ln) = 0.002% for Btz-OCH(3) and 0.009% for Btz-OH) was less efficient than that of the Nd(III) complexes. This difference is due to the smaller energy gap between the emitting and ground levels of the Er(III) ion. The rate constants for the energy transfer from Btz-R to Ln(III) were about approximately 10(9) s(-1), as evaluated by the F?rster resonance energy transfer mechanism.  相似文献   

6.
Terpyridine ligands of the type Fc'-X-tpy (Fc'=ferrocenyl or octamethylferrocenyl, X=rigid spacer, tpy'=4'-substituted 2,2':6',2'-terpyridine) were prepared, crystallographically characterised and used for the synthesis of di- and trinuclear bis(terpyridine) complexes of RuII, FeII and ZnII. Donor-sensitiser dyads and triads based on RuII were thoroughly investigated by (spectro)electrochemistry, UV/Vis, transient absorption and luminescence spectroscopy, and an energy level scheme was derived on the basis of the data collected. Intramolecular quenching of the photoexcited RuII complexes by the redox-active Fc' groups can occur reductively and by energy transfer. Both the redox potential of the donor Fc' and the nature of the spacer X have a decisive influence on excited-state lifetimes and emission properties of the complexes. Some of the compounds show room-temperature luminescence, which is unprecedented for ferrocenyl-functionalised compounds of this kind.  相似文献   

7.
The photophysical and electrochemical properties of a platinum(II) diimine complex bearing the bidentate diacetylide ligand tolan-2,2'-diacetylide (tda), Pt(dbbpy)(tda) [dbbpy = 4,4'-di-tert-butyl-2,2'-bipyridine] (1), are compared with two reference compounds, Pt(dbbpy)(C[triple bond]CPh)(2) (2) and Pt(dppp)tda [dppp = 1,3-bis(diphenylphosphino)propane] (3), respectively. The X-ray crystal structure of 1 is reported, which illustrates the nearly perfect square planarity exhibited by this metallacycle. Chromophore 2 possesses low-lying charge-transfer excited states analogous to 1, whereas structure 3 lacks such excited states but features a low-lying platinum-perturbed tda intraligand triplet manifold. In CH(2)Cl(2), 1 exhibits a broad emission centered at 562 nm at ambient temperature, similar to 2, but with a higher photoluminescence quantum yield and longer excited-state lifetime. In both instances, the photoluminescence is consistent with triplet-charge-transfer excited-state parentage. The rigidity imposed by the cyclic diacetylide ligand in 1 leads to a reduction in nonradiative decay, which enhances its room-temperature photophysical properties. By comparison, 3 radiates highly structured tda-localized triplet-state phosphorescence at room temperature. The 77 K emission spectrum of 1 in 4:1 EtOH/MeOH becomes structured and is quantitatively similar to that measured for 3 under the same conditions. Because the 77 K spectra are nearly identical, the emissions are assigned as (3)tda in nature, implying that the charge-transfer states are raised in energy, relative to the (3)tda levels in 1 in the low-temperature glass. Nanosecond transient absorption spectrometry and ultrafast difference spectra were determined for 1-3 in CH(2)Cl(2) and DMF at ambient temperature. In 1 and 2, the major absorption transients are consistent with the one-electron reduced complexes, corroborated by reductive spectroelectrochemical measurements performed at room temperature. As 3 does not possess any charge-transfer character, excitation into the pipi* transitions of the tda ligand generated transient absorptions in the relaxed excited state assigned to the ligand-localized triplet state. In all three cases, the excited-state lifetimes measured by transient absorption are similar to those measured by time-resolved photoluminescence, suggesting that the same excited states giving rise to the photoluminescence are responsible for the absorption transients. ESR spectroscopy of the anions 1- and 2- and reductive spectroelectrochemistry of 1 and 2 revealed a LUMO based largely on the pi* orbital of the dbbpy ligand. Time-dependent density functional theory calculations performed on 1-3 both in vacuum and in a CH(2)Cl(2) continuum revealed the molecular orbitals, energies, dipole moments, and oscillator strengths for the various electronic transitions in these molecules. A DeltaSCF-method-derived shift applied to the calculated transition energies in the solvent continuum yielded good agreement between theory and experiment for each molecule in this study.  相似文献   

8.
Functionalized 6,6'-dimethyl-3,3'-dihydroxy-2,2'-bipyridine dyes (BP(OH)(2)) exhibit relatively intense fluorescence from the relaxed excited state formed by excited-state intramolecular proton transfer (ESIPT). Bromo functionalization of (BP(OH)(2)) species followed by palladium(0)-catalyzed reactions allows the connection (via alkyne tethers) of functional groups, such as the singlet-emitter diazaboraindacene (bodipy) group or a chelating module (terpyridine; terpy). The X-ray structure of the terpy-based compound confirms the planarity of the 3,3'-dihydroxy-bipyridine unit. The new dyes exhibit relatively intense emission on the nanosecond timescale when in fluid solution, in the solid state at 298 K, and in rigid glasses at 77 K. In some cases, the excitation wavelength luminescence was observed and attributed to 1) inefficiency of the ESIPT process in particular compounds when not enough vibrational energy is introduced in the Franck-Condon state, which is populated by direct light excitation or 2) the presence of an additional excited state that deactivates to the ground state without undergoing the ESIPT process. For some selected species, the effect of the addition of zinc salts on the absorption and luminescence spectra was investigated. In particular, significant fluorescence changes were observed as a consequence of probable consecutive formation of a 1:1 and 1:2 molecular ratio of ligand/zinc adducts owing to coordination of Zn(II) ions by the bipyridyldiol moieties, except when an additional terpyridine subunit is present. In fact, this latter species preferentially coordinates to the Zn(II) ion in a 1:1 molecular ratio and further inhibits Zn(II) interaction. In the hybrid Bodipy/BP(OH)(2) species, complete energy transfer from the BP(OH)(2) to the bodipy fluorophore occurs, leading to exclusive emission from the lowest-lying bodipy subunit.  相似文献   

9.
A novel Pt(II) terpyridine complex that has a nicotinamide moiety linked to the terpyridyl ligand has been synthesized in good yield and studied structurally and spectroscopically. The complex, [Pt(Nttpy)Cl](PF(6))(2) where Nttpy = 4'-(p-nicotinamide-N-methylphenyl)-2,2':6',2' '-terpyridine, is observed to be brightly luminescent in the solid state at room temperature and at 77 K. The complex exhibits reversible vapochromic behavior and crystallographic change in the presence of several volatile organic solvents. Upon exposure to methanol vapors, the complex changes color from red to orange, and a shift to higher energy is observed in the emission maximum with an increase in excited-state lifetime and emission intensity. The crystal and molecular structures of the orange and red forms, determined by single-crystal X-ray diffraction on the same single crystal, were found to be equivalent in the molecular sense and only modestly different in terms of packing. In both forms, the cationic Pt(II) complexes possess distorted square planar geometries. Analysis of the orange form's crystal packing reveals the presence of solvent molecules in lattice voids, Pt...Pt separations averaging 3.75 A and a zigzag arrangement between nearest neighbor Pt atoms, whereas the red form is devoid of solvent within the crystal lattice and contains complexes stacked with a nearly linear arrangement of Pt(II) ions having an average distance of 3.33 A. On the basis of the crystallographic data, it is evident that sorption of methanol vapor induces a change in intermolecular contacts and Pt...Pt interactions in going from red to orange. Disruption of the d(8)-d(8) metallophilic interactions consequently alters the emitting state from (3)[(d)sigma*-pi*(terpyridine)] that is formally a metal-metal-to-ligand charge transfer (MMLCT) state in the red form to one in which the HOMO corresponds to a more localized Pt(d) orbital in the red form ((3)MLCT).  相似文献   

10.
This work describes the synthesis and characterization of two new bis-terdentate Ru(II) complexes. Compound 1 is a homoleptic complex containing two CNC N-heterocyclic carbene (NHC) based ligands, whereas compound 2 bears one CNC ligand and an ancillary terpyridine ligand. The redox and photophysical properties of both compounds have been investigated and their X-ray crystal structures determined. Complex 1 displays a close-to-perfect octahedral coordination geometry and is not luminescent at room temperature while complex 2 features room temperature and 77 K luminescence despite its partially distorted geometry. The presence of the NHC moieties brings a significant amount of electronic density to the metal centre therefore lowering its oxidation potential with respect to that of analogous polypyridyl complexes.  相似文献   

11.
A series of seven new tetrazole‐based ligands (L1, L3–L8) containing terpyridine or bipyridine chromophores suited to the formation of luminescent complexes of lanthanides have been synthesized. All ligands were prepared from the respective carbonitriles by thermal cycloaddition of sodium azide. The crystal structures of the homoleptic terpyridine–tetrazolate complexes [Ln(Li)2]NHEt3 (Ln=Nd, Eu, Tb for i=1, 2; Ln=Eu for i=3, 4) and of the monoaquo bypyridine–tetrazolate complex [Eu(H2O)(L7)2]NHEt3 were determined. The tetradentate bipyridine–tetrazolate ligand forms nonhelical complexes that can contain a water molecule coordinated to the metal. Conversely, the pentadentate terpyridine–tetrazolate ligands wrap around the metal, thereby preventing solvent coordination and forming chiral double‐helical complexes similarly to the analogue terpyridine–carboxylate. Proton NMR spectroscopy studies show that the solid‐state structures of these complexes are retained in solution and indicate the kinetic stability of the hydrophobic complexes of terpyridine–tetrazolates. UV spectroscopy results suggest that terpyridine–tetrazolate complexes have a similar stability to their carboxylate analogues, which is sufficient for their isolation in aerobic conditions. The replacement of the carboxylate group with tetrazolate extends the absorption window of the corresponding terpyridine‐ (≈20 nm) and bipyridine‐based (25 nm) complexes towards the visible region (up to 440 nm). Moreover, the substitution of the terpyridine–tetrazolate system with different groups in the ligand series L3–L6 has a very important effect on both absorption spectra and luminescence efficiency of their lanthanide complexes. The tetrazole‐based ligands L1 and L3–L8 sensitize efficiently the luminescent emission of lanthanide ions in the visible and near‐IR regions with quantum yields ranging from 5 to 53 % for EuIII complexes, 6 to 35 % for TbIII complexes, and 0.1 to 0.3 % for NdIII complexes, which is among the highest reported for a neodymium complex. The luminescence efficiency could be related to the energy of the ligand triplet states, which are strongly correlated to the ligand structures.  相似文献   

12.
Three axially substituted complexes, 2,3-octa(3,5-di-tert-butylphenoxy)-2,3-naphthalocyaninato indium chloride (1a), 2,3-octa(3,5-di-tert-butylphenoxy)-2,3-naphthalocyaninato indium bromide (1b), and 2,3-octa(3,5-di-tert-butylphenoxy)-2,3-naphthalocyaninato indium iodide (1c) have been synthesized and their photophysical properties have been investigated. Optical power limiting of nanosecond (ns) and picosecond (ps) laser pulses at 532 nm using these complexes has been demonstrated. All complexes display strong Q(0,0) absorption and measurable emission in the near-infrared region and exhibit strong excited-state absorption in the range of 470-700 nm upon ns laser excitation. The different axial ligands show negligible effect on the linear absorption, emission, and transient difference absorption spectra. However, the excited-state lifetime, triplet excited-state quantum yield, and efficiency to generate singlet oxygen are affected significantly by the heavier axial ligand. Brominated and iodinated complexes 1b and 1c show higher triplet excited-state quantum yield, while chlorinated complex 1a has longer excited-state lifetime and is more efficient in generating singlet oxygen. The iodinated complex 1c displayed the best optical limiting due to the higher ratio of excited-state absorption cross section to ground state absorption cross section (sigma(eff)/sigma(0)).  相似文献   

13.
A series of platinum(II) complexes with 1,3-bis(2-pyridylimino)isoindoline (BPI) derivatives were prepared by substitution of the coordinated Cl in the precursor complex Pt(BPI)Cl with a N-heterocyclic ligand such as pyridine, phthalazine or phenanthridine. These complexes display orange to red luminescence in fluid dichloromethane solutions and in the solid states at room temperature. The photophysical properties were tuned by introducing electron-withdrawing -NO(2) or electron-donating -NH(2) to the BPI ligand. The DFT computational studies suggest that the emission in the N-heterocyclic ligand substituted platinum(II) complexes originates mainly from the (3)[π→π*(BPI)] (3)IL triplet excited state, mixed with some (3)[dπ(Pt)→π*(BPI)] (3)MLCT character. Compared with the precursor Pt(BPI)Cl, both the low-energy absorption and the emission in the N-heterocyclic ligand substituted platinum(II) complexes exhibits a distinct blue-shift due to an obviously enhanced contribution from the (3)IL state and a reduced (3)MLCT character.  相似文献   

14.
The photophysical properties of a series of 4,6-diphenyl-2,2'-bipyridyl platinum(II) complexes bearing different σ-alkynyl ancillary ligands (1a-1k) were systematically investigated. All complexes exhibit strong (1)π,π* absorption bands in the UV region; and broad, structureless charge-transfer band(s) in the visible region, which systematically red-shift(s) when the electron-donating ability of the para substituent on the phenylacetylide ligand increases. All complexes are emissive in solution at room temperature. When excited at the charge-transfer absorption band, the complexes exhibit long-lived orange emission (λ(max): 555-601 nm), which is attributed to a triplet metal-to-ligand charge transfer/intraligand charge transfer emission ((3)MLCT/(3)ILCT). Most of these complexes exhibit broad triplet transient difference absorption in the visible to the near-IR region, with a lifetime comparable to those measured from the decay of the (3)MLCT/(3)ILCT emission. The reverse saturable absorption (RSA) of these complexes were demonstrated at 532 nm using nanosecond laser pulses. The degree of RSA follows this trend: 1k ≈ 1a > 1c > 1f ≈ 1i > 1h ≈ 1b > 1e > 1d > 1g, which is mainly determined by the ratio of the triplet excited-state absorption cross section to that of the ground-state and the triplet excited-state quantum yield.  相似文献   

15.
As a kind of photoluminescent material, CuI complexes have many advantages such as adjustable emission, variable structures, and low cost, attracting attention in many fields. In this work, two novel two‐coordinate CuI‐N‐heterocyclic carbene complexes were synthesized, and they exhibit unique dual emission properties, fluorescence and phosphorescence. The crystal structure, packing mode, and photophysical properties under different conditions were systematically studied, proving the emissive mechanism to be the locally excited state of the carbazole group. Based on this mechanism, ultralong room‐temperature phosphorescence (RTP) with a lifetime of 140 ms is achieved by selective deuteration of the carbazole group. These results deepen the understanding of the luminescence mechanism and design strategy for two‐coordinate CuI complexes, and prove their potential in applications as ultralong RTP materials.  相似文献   

16.
Absorption, emission, and excitation spectra for solid-state and solution of Tb(III), Dy(III), and Gd(III) complexes with the polypyridine ligand 6,6'-bis[bis(2-pyridylmethyl)-aminomethyl]-2,2'-bipyridine (C36H34N8) are presented. Measurements of excited-state lifetimes and quantum yields in various solvents at room temperature and 77 K are also reported and used to characterize the excited-state energetics of this system. Special attention is given to the characterization of metal-to-ligand energy transfer efficiency and mechanisms. The measurement of circularly polarized luminescence (CPL) from the solution of the Dy(III) complex following circularly polarized excitation confirms the chiral structure of the complexes under study. No CPL is present in the luminescence from the Eu(III) or Tb(III) complex because of efficient racemization. The variation of the magnitude of the CPL as a function of temperature from an aqueous solution of DyL is used for the first time to characterize the solution equilibria between different chiral species.  相似文献   

17.
A series of platinum(II) 4'-aryl-2,2':6',2' '-terpyridyl phenylacetylide complexes (5-8) with 4'-naphthyl, 4'-phenanthryl, 4'-anthryl, and 4'-pyrenyl substituents have been synthesized and characterized. The emission properties of these complexes and their corresponding platinum(II) 4'-aryl-2,2':6',2' '-terpyridyl chloride complexes (1-4) at room temperature and 77 K have been systematically investigated. Except for the 4'-pyrenyl-2,2':6',2' '-terpyridyl phenylacetylide complex that emits from an admixing state consisting of metal-to-ligand charge-transfer (3MLCT), intraligand charge-transfer (3ILCT), and 3pi,pi characters, emissions of 4'-naphthyl, 4'-phenanthryl, and 4'-anthryl-2,2':6',2' '-terpyridyl phenylacetylide complexes all originate from a 3MLCT-dominant state. The emission lifetime of the 4'-pyrenyl-2,2':6',2' '-terpyridyl phenylacetylide complex (8) is longer than 2 mus at room temperature, and more than 300 mus at 77 K, while the other three complexes possess an emission lifetime of 200-400 ns at room temperature and tens of microseconds at 77 K. Replacing the chloride ligand in the 4'-naphthyl, 4'-phenanthryl, and 4'-anthryl-2,2':6',2' '-terpyridyl chloride complexes by a phenylacetylide ligand significantly increases the emission efficiency by an order of magnitude, and the emission lifetimes become longer. In contrast, such an alternation has no pronounced effect on the emission efficiency and lifetime of the 4'-pyrenyl-2,2':6',2' '-terpyridyl complexes. In the transient difference absorption (TA) spectra of 5 and 6, a moderately intense absorption band from 470 to 830 nm and a bleaching band between 400 and 470 nm were observed. For 7, the TA spectrum features a narrow, weak bleaching band at approximately 380 nm and a strong, narrow band at approximately 420 nm, as well as a broad, structureless band from 470 to 750 nm. In addition, a fourth, positive band appears above 800 nm. Complex 8 exhibits a strong, narrow bleaching band at approximately 340 nm and a broad, positive band extending from 370 to 830 nm, with the band maximum appearing at approximately 520 nm. The lifetimes obtained from the kinetic transient absorption measurement coincide with those from the kinetic emission measurement, indicating that the transient absorption originates from the same excited state that emits or, alternatively, from a state that is in equilibrium with the emitting state. All complexes exhibit optical limiting for 4.1 ns laser pulses at 532 nm, with 8 giving rise to the strongest optical limiting, presumably because of the much longer triplet excited-state lifetime and the stronger transient absorption at 532 nm.  相似文献   

18.
The synthesis, structural characterization, and photoluminescence (PL) properties of the square-planar terpyridylplatinum(II) complex [ ( t )Bu 3tpyPtCCtpy] (+) ( 1) and the octahedral trinuclear Fe (II) and Zn (II) analogues [Fe( ( t )Bu 3tpyPtCCtpy) 2] (4+) ( 2) and [Zn( ( t )Bu 3tpyPtCCtpy) 2] (4+) ( 3) are described. The photophysical properties of the mononuclear Pt (II) complex 1 are consistent with a charge-transfer excited-state parentage producing a large Stokes shift with a concomitant broad, structureless emission profile. The Fe-based ligand-field states in 2 provide an efficient nonradiative deactivation pathway for excited-state decay, resulting in a nonemissive compound at room temperature. Interestingly, upon chelation of 1 with Zn (II), a higher energy charge-transfer emission with a low-energy shoulder and a 215 ns excited-state lifetime is produced in 3. A spectroscopically identical species relative to 3 was produced in control experiments when 1 was reacted with excess protons (HClO 4) as ascertained by UV-vis and static PL spectra measured at room temperature and 77 K. Therefore, the chelation of Zn (II) to 1 is acid-base in nature, and its Lewis acidity renders the highest occupied molecular orbital level in 1 much less electron-rich, which induces a blue shift in both the absorption and emission spectra. At 77 K, complexes 1, 3, and protonated 1 display at least one prevalent vibronic component in the emission profile (1360 cm (-1)) resembling PL emanating from a ligand-localized excited-state, indicating that these emitting states are inverted relative to room temperature. These results are qualitatively confirmed by the application of time-dependent theory using only the 1360 cm (-1) mode to reproduce the low-temperature emission spectra.  相似文献   

19.
A platinum complex with the 6-(7-benzothiazol-2'-yl-9,9-diethyl-9H-fluoren-2-yl)-2,2'-bipyridinyl ligand (1) was synthesized and the crystal structure was determined. UV/Vis absorption, emission, and transient difference absorption of 1 were systematically investigated. DFT calculations were carried out on 1 to characterize the electronic ground state and aid in the understanding of the nature of low-lying excited electronic states. Complex 1 exhibits intense structured (1)π-π* absorption at λ(abs)<440?nm, and a broad, moderate (1)MLCT/(1)LLCT transition at 440-520?nm in CH(2)Cl(2) solution. A structured (3)π-π*/(3)MLCT emission at about 590?nm was observed at room temperature and at 77?K. Complex 1 exhibits both singlet and triplet excited-state absorption from 450?nm to 750?nm, which are tentatively attributed to the (1)π-π* and (3)π-π* excited states of the 6-(7-benzothiazol-2'-yl-9,9-diethyl-9H-fluoren-2-yl)-2,2'-bipyridine ligand, respectively. Z-scan experiments were conducted by using ns and ps pulses at 532?nm, and ps pulses at a variety of visible and near-IR wavelengths. The experimental data were fitted by a five-level model by using the excited-state parameters obtained from the photophysical study to deduce the effective singlet and triplet excited-state absorption cross sections in the visible spectral region and the effective two-photon absorption cross sections in the near-IR region. Our results demonstrate that 1 possesses large ratios of excited-state absorption cross sections relative to that of the ground-state in the visible spectral region; this results in a remarkable degree of reverse saturable absorption from 1 in CH(2)Cl(2) solution illuminated by ns laser pulses at 532?nm. The two-photon absorption cross sections in the near-IR region for 1 are among the largest values reported for platinum complexes. Therefore, 1 is an excellent, broadband, nonlinear absorbing material that exhibits strong reverse saturable absorption in the visible spectral region and large two-photon-assisted excited-state absorption in the near-IR region.  相似文献   

20.
The synthesis of ligand H3 based on a disymmetrically substituted terpyridine core functionalised by a carboxylic acid in the 6-position and a bis(carboxymethyl)aminomethyl function in the 6'-position is described. The coordination behaviour of this heptadentate (4N/3O) ligand with lanthanide cations (Ln=Eu, Gd and Tb) was studied in solution showing the formation of complexes with [Ln] stoichiometry. Complexes with general formula [Ln(H2O)2] were isolated from neutral water solutions containing equimolar amounts of cations and ligands, and the complexes were characterized in the solid state (elemental analysis, IR) and in solution (mass spectrometry). The photo-physical properties of the luminescent complexes of Eu and Tb were studied in water solution by means of absorption, steady state and time-resolved emission spectroscopies. Evolution of the luminescence lifetimes of the Eu and Tb complexes in H2O and D2O reveals the presence of two water molecules coordinated in the first coordination sphere of the cations. Despite this important hydration number, the overall luminescence quantum yields of the complexes remained elevated, especially in the case of Tb (Phi=22.0 and 6.5% respectively for Tb and Eu). Upon crystallisation the Gd complex formed dimeric species in which two gadolinium atoms are each heptacoordinated by one ligand, the coordination sphere being completed by a single water molecule and a bridging carboxylate function, pointing to different behaviours in the solid and liquid states.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号