首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
路崎  王献红  王佛松 《应用化学》2011,28(2):136-141
通过二碘代二茂铁与不同炔化物进行Sonogashira偶联反应,合成了3种新颖的含有二茂铁单元的苯乙炔齐聚物,用1H NMR、13C NMR和MS测试技术分别对其结构进行了表征。 并借助量子化学计算对3种分子的电子结构进行了预测,结果显示,该类型分子导线具有不同于其它类型苯乙炔齐聚物的LUMO能级持续衰减特征,因此极有可能具备极为优良的电子传输性能。  相似文献   

2.
3.
A rational approach to the design of supramolecular organogels of all-trans oligo(p-phenylene vinylene) (OPV) derivatives, a class of well-known organic semiconductor precursors, is reported. Self-assembly of these molecules induced gelation of hydrocarbon solvents at low concentrations (<1 mM), resulting in high aspect ratio nanostructures. Electron microscopy and atomic force microscopy (AFM) studies revealed twisted and entangled supramolecular tapes of an average of 50-200 nm in width, 12-20 nm in thickness, and several micrometers in length. The hierarchical growth of the entangled tapes and the consequent gelation is attributed to the lamellar-type packing of the molecules, facilitated by cooperative hydrogen bonding, pi stacking, and van der Waals interactions between the OPV units. Gelation of OPVs induced remarkable changes in the absorption and emission properties, which indicated strong electronic interaction in the aggregated chromophores. Comparison of the absorption and emission spectra in the gel form and in the solid film indicated a similar chromophore organization in both phases. The presence of self-assembled aggregates of OPVs was confirmed by solvent- and temperature-dependent changes in the absorption and emission properties, and by selective excitation experiments. This is the first detailed report of the gelation-induced formation of OPV nanotapes, assisted by weak, nondirectional hydrogen-bonding motifs and pi-pi stacking. These findings may provide opportunities for the design of a new class of functional soft materials and nanoarchitectures, based on pi-conjugated organic semiconductor-type molecules, thereby enabling the manipulation of their optical properties.  相似文献   

4.
The synthesis and energy‐transfer properties of a series of oligo(p‐phenylene ethynylene)–BODIPY ( OPEB ) cassettes are reported. A series of oligo(p‐phenylene ethynylene)s ( OPE s) with different conjugated chain lengths as energy donor subunit in the energy‐transfer system were capped at both ends with BODIPY chromophores as energy‐acceptor subunits. The effect of the conjugated chain of OPE s on energy transfer in the OPEB cassettes was investigated by UV/Vis and fluorescence spectroscopy and modeling. With increasing number n of phenyl acetylene units (n=1–7), the absorption and emission maxima of OPEn are bathochromically shifted. In the OPEBn analogues, the absorption maximum assigned to the BODIPY moieties is independent of the length of the OPE spacer. However, the relative absorption intensity of the BODIPY band decreases when the number of phenyl acetylene units is increased. The emission spectra of OPEBn are dominated by a band peaking at 613 nm, corresponding to emission of the BODIPY moieties, regardless of whether excitation is at 420 or 550 nm. Furthermore, a very small band is observed with a maximum between 450 and 500 nm, and its intensity relative to that of the BODIPY emission increases with increasing n, that is, the excited state of OPE subunits is efficiently quenched in OPEBn by energy transfer to the BODIPY moieties. Energy transfer (ET) from OPEn to BODIPY in OPEBn is very efficient (all ΦET values are greater than 98 %) and only slightly decreases with increasing length of the OPE units. These results are supported by theoretical studies that show very high energy transfer efficiency (ΦET>75 %) from the OPE spacer to the BODIPY end‐groups for chains with up to 15–20 units.  相似文献   

5.
The preparation, characterization and electrical properties of Langmuir–Blodgett (LB) films composed of a symmetrically substituted oligomeric phenylene ethynylene derivative, namely, 4,4′‐[1,4‐phenylenebis(ethyne‐2,1‐diyl)]dibenzoic acid (OPE2A), are described. Analysis of the surface pressure versus area per molecule isotherms and Brewster angle microscopy reveal that good‐quality Langmuir (L) films can be formed both on pure water and a basic subphase. Monolayer L films were transferred onto solid substrates with a transfer ratio of unity to obtain LB films. Both L and LB films prepared on or from a pure water subphase show a red shift in the UV/Vis spectrum of about 14 nm, in contrast to L and LB films prepared from a basic subphase, which show a hypsochromic shift of 15 nm. This result, together with X‐ray photoelectron spectroscopic and quartz crystal microbalance experiments, conclusively demonstrate formation of one‐layer LB films in which OPE2A molecules are chemisorbed onto gold substrates and consequently ? COO? Au junctions are formed. In LB films prepared on a basic subphase the other terminal acid group is also deprotonated and associates with an Na+ counterion. In contrast, LB films prepared from a pure water subphase preserve the protonated acid group, and lateral H‐bonds with neighbouring molecules give rise to a supramolecular structure. STM‐based conductance studies revealed that films prepared from a basic subphase are more conductive than the analogous films prepared from pure water, and the electrical conductance of the deprotonated films also coincides more closely with single‐molecule conductance measurements. This result was interpreted not only in terms of better electron transmission in ? COO? Au molecular junctions, but also in terms of the presence of lateral H‐bonds in the films formed from pure water, which lead to reduced conductance of the molecular junctions.  相似文献   

6.
In this work, a novel 1,4-bis (4- aminophenylethynyl)benzene (OPE-NH2, a symmetric linear conjugated oligo(phenylene ethynylene)s derive) and chemically-reduced graphene oxide (rGO) nanocomposite (OPE-NH2/rGO) was synthesized by a simple self-assembly method. The OPE-NH2/rGO nanocomposite was stable and water soluble. The formation of OPE-NH2/rGO nanocomposite was ascribed to the π–π stacking interaction between the conjugated structure of OPE-NH2 and rGO as well as the electrostatic force between the amino group of OPE-NH2 and the carboxyl group on rGO, which was characterized by FT-IR, UV–vis spectra and fluorescence spectra. The OPE-NH2/rGO nanocomposite exhibited significantly improved electrocatalytic activity to the oxidization of dopamine (DA) than that of rGO or OPE-NH2. The electrochemical performances of OPE-NH2/rGO were dependent on the OPE-NH2 contents, and OPE-NH2 content of 5 wt% exhibited the highest activity. Compared with that of rGO, the nanocomposite presented superior high sensitivity with detection limit of 5 nM, excellent selectivity, wide linear range (0.01–60 μM) and good stability on the determination of DA. The practical application of the developed OPE-NH2/rGO nanocomposite modified electrode was successfully demonstrated for DA determination in human serum samples.  相似文献   

7.
The structure of multiply hydrogen-bonded systems is determined with picometer accuracy by a combined solid-state NMR and quantum-chemical approach. On the experimental side, advanced 1H-15N dipolar recoupling NMR techniques are capable of providing proton-nitrogen distances of up to about 250 pm with an accuracy level of +/-1 pm for short distances (i.e., around 100 pm) and +/-5 pm for longer ones (i.e., 180 to 250 pm). The experiments were performed under fast magic-angle spinning, which ensures sufficient dipolar decoupling and spectral resolution of the 1H resonance lines. On the quantum-chemical side, the structures of the hydrogen-bonded systems were computationally optimised, yielding complete sets of nitrogen-proton and proton-proton distances, which are essential for correctly interpreting the experimental NMR data. In this way, nitrogen-proton distances were determined with picometer accuracy, so that vibrational averaging effects on dipole-dipole couplings need to be considered. The obtained structures were finally confirmed by the complete agreement of computed and experimental 'H and '5N chemical shifts. This demonstrates that solid-state NMR and quantum-chemical methods ideally complement each other and, in a combined manner, represent a powerful approach for reliable, high-precision structure determination whenever scattering techniques are inapplicable.  相似文献   

8.
The molecular and crystal structure of 2-(2′-hydroxyphenyl)imidazole (2) and 1-methyl-2-(2′-hydroxyphenyl)imidazole (5) have been determined by X-ray analysis. Compound (2) presents a strong intramolecular hydrogen bond (IMHB) responsible for the planarity of the molecule. In both compounds the molecules form chains through N---H…O (compound 2) and O---H…N hydrogen bonds (compound 5) but giving rise to the same packing mode. Ab initio calculations (6–31G**) have been carried out on both compounds in order to study the effect of the IMHB on the structure.  相似文献   

9.
10.
Poly(phenylene ethynylene)s(P1) with 4-vinylaniline pendant groups were successfully prepared by the Sonogashira coupling polymerization between l,4-diethynyl-2,5-bis(pentyloxy)benzene and 4-[2-(2,5-dibromophenyl)vinyl]-aniline. In comparison with its analogue P2 without amino group,the emission of P1 is only enhanced by aggregation when adding n-hexane into its THF solution,exhibiting an aggregation-induced emission enhancement(AIEE) effect.When methanol or water instead of hexane was added into THF solution,P1,however,didn’t show AIEE.The results indicated that amino groups strengthen the inter-chain and intra-chain interactions in P1 and restrict the non-radiative energy transition. This strategy can provide a platform for developing highly sensitive and efficient bio- and chemosensors.  相似文献   

11.
Two new poly(phenylene ethynylene)s with alkoxyphenyl substituents were synthesized and characterized. The polymers were amorphous, dissolved readily in common organic solvents, and showed glass‐transition temperatures at 162–175 °C. They showed blue photoluminescence both in solution and in the solid state due to the steric interaction between the substituents and the main chain that caused an interruption of the conjugation length. The quantum yields in a tetrahydrofuran solution were up to 0.63. Excimer emission was the dominant product of the photoexcitation of thin films of the polymers. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1449–1455, 2002  相似文献   

12.
13.
An extremely facile and rapid solid phase route free of column chromatographic purification for the synthesis of the soluble monodisperse oligo(l, 4-phenyleneethynylene)s up to-60A was presented.  相似文献   

14.
Amphiphilic star‐shaped oligo(ethylene glycol)s with a hydrophobic bile acid core and varying number of hydrophilic arms have been made. Their thermal behavior in aqueous solutions depends on the number rather than the length of the arms. The two‐armed lithocholate derivative showed the strongest tendency for association and exhibited the lowest cloud point (79 °C) of the oligomers made, as well as another phase separation at a lower temperature (31 °C). The “double thermosensitivity” arising both from the salt‐dependent LCST of the oligo(ethylene glycol) segments and the temperature‐responsive self‐assembly of amphiphilic bile acid derivative provides an interesting path in the design of bile acid‐based smart materials.

  相似文献   


15.
16.
Since the early works of A. J. Heeger, A G. MacDiarmid and Hideki Shirakawa on semiconducting polymers, π-conjugated oligomers and polymers have been actively investigated for a variety of optoelectronic applications, such as field effect transitors (FET…  相似文献   

17.
In order to form suitable systems designed for resonance energy transfer, a series of monodisperse methacrylate‐based monomers containing rigid π‐conjugated oligo(phenylene ethynylenes) with different sizes of the conjugated systems ( M1 – M3 ), and therefore different optoelectronic properties, were synthesized and subsequently polymerized using the reversible addition–fragmentation chain transfer polymerization technique ( P1 – P3 ). In addition, these oligomers were also copolymerized with methyl methacrylate. The obtained polymers were characterized by 1H NMR spectroscopy, size exclusion chromatography, and analytical ultracentrifugation. The photophysical properties of the polymers were studied by UV–vis absorption and emission spectroscopy in diluted solutions as well as in thin films and compared to the photophysics of the corresponding monomers. Thereby, changes going from monomeric to polymeric systems could be detected in fluorescence quantum yields and lifetimes pointing to energy trapping, e.g., energy transfer. Donor–acceptor copolymers containing different numbers of monomeric units within the side chain exhibit differences in the emission spectra, indicating that energy trapping in polymers is very sensitive to structural properties such as the chain length. UV–vis absorption spectroscopy as well as time‐resolved lifetime studies indicate intrapolymer and interpolymer energy transfer. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

18.
The conformations of 2-(2-hydroxyethoxy)-3,4-dihydropyran were calculated by the methods of molecular mechanics and MNDO/H with and without allowance for the formation of intramolecular hydrogen bonds. Two possible centers of the formation of the intramolecular hydrogen bond,viz., the oxygen atoms of the alkoxy radical and of the dihydropyran cycle, have been considered. The results obtained show that 2-(2-hydroxyethoxy)-3,4-dihydropyran does not exist in any preferable conformation.Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 7, pp. 1202–1203, July, 1994.  相似文献   

19.
20.
Facially amphiphilic (FA) phenylene ethynylene (PE) polymers that self-assemble in aqueous solution were studied by small-angle X-ray diffraction (SAXD) and found to self-assemble into bilayers with a fully extended backbone. The resulting bilayers have long-range liquid-crystalline order. This self-assembly is programmed into the molecule by placing polar and nonpolar groups at precise locations so that they segregate onto opposite sides of the molecular structure. The absence of FA patterning generated an amorphous sample confirming the importance of this programmed amphiphilicity in the self-assembly process. Facially amphiphilic patterning represents a new design criterion for supramolecular chemistry, illustrated here in the observation of molecular ordering into bilayers reminiscent of self-assembled structures commonly found in biology, including amphiphilic beta-sheet polypeptides and phospholipid bilayers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号