首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Modeling and simulation for the field emission of carbon nanotubes array   总被引:3,自引:0,他引:3  
To optimize the field emission of the infinite carbon nanotubes (CNTs) array on a planar cathode surface, the numerical simulation for the behavior of field emission with finite difference method was proposed. By solving the Laplace equation with computer, the influence of the intertube distance, the anode–cathode distance and the opened/capped CNT on the field emission of CNTs array were taken into account, and the results could accord well with the experiments. The simulated results proved that the field enhancement factor of individual CNT is largest, but the emission current density is little. Due to the enhanced screening of the electric field, the enhancement factor of CNTs array decreases with decreasing the intertube distance. From the simulation the field emission can be optimized when the intertube distance is close to the tube height. The anode–cathode distance hardly influences the field enhancement factor of CNTs array, but can low the threshold voltage by decreasing the anode–cathode distance. Finally, the distribution of potential of the capped CNTs array and the opened CNTs array was simulated, which the results showed that the distribution of potential can be influenced to some extent by the anode–cathode distance, especially at the apex of the capped CNTs array and the brim of the opened CNTs array. The opened CNTs array has larger field enhancement factor and can emit more current than the capped one.  相似文献   

2.
The conditions of formation of local states in the energy spectra of semi-infinite carbon nanotubes with regularly arranged atoms adsorbed on the outer surface are studied in the π-electron approximation. The influence of the adsorption type (physical and chemical), the donor-acceptor properties of adsorbed atoms, their concentration on the graphene surface, and the nanotube diameter on the characteristics of the local states that arise is considered. It is shown that both physical and chemical adsorptions cause a decrease in the band gap separating the upper filled energy band and the lower vacant band. This effect can significantly change the electrical and optical properties of the nanotubes under consideration in comparison with the initial “pure” tubulene.  相似文献   

3.
We report that measurements of the Raman intensity versus applied voltage are sensitive to filling of the density of states and enable us to measure the second band gap in specific semiconducting single-walled carbon nanotubes (SWNTs). Raman scattering preferentially selects sets of SWNTs whose excitonic transitions are resonant with the incident or scattered photon energies. Simultaneous measurement of the electronic gap and exciton resonance allows us to infer binding energies for the exciton of 0.49+/-0.05 and 0.62+/-0.05 eV for tubes of (10, 3) and (7, 5), respectively. Metallic SWNTs exhibit no excitonic feature.  相似文献   

4.
In this work we studied the functionalization of commercially available multiwalled carbon nanotubes (MWCNT) (Nanocyl 3100) with polystyrene by the method so called “grafting from”. The nanotubes were used as received and oxidized in air at 400 °C. The functionalization was started using thionyl chloride under reflux, followed by a reaction with ethylene glycol which allowed the inclusion of hydroxyl groups. The reaction of those with 2-chloropropionyl chloride led to the generation of the polymerization initiator. Last, the radical polymerization of the functionalized nanotubes, using styrene as the monomer, led to new materials which were studied with thermogravimetric analysis (TGA), Fourier transform infrared (FTIR) spectroscopy, transmission electron microscopy (TEM) and ultraviolet–visible (UV–vis) spectroscopy.  相似文献   

5.
In this paper, we investigate the complete ion rejection using carbon nanotube membranes comprising ultra-small radii nanotubes. Three acceptance radii for a water molecule, a sodium ion and a chloride ion are determined assuming the continuous approximation. Given the acceptance radii, we may confine the scope of the nanotube radius so that only water molecules can pass through but the heavier sodium and chloride ions are repulsed from the nanotube ends. We assume that the collective motion of water molecules inside a sufficiently long nanotube is driven by atomic vibrations so that classical phonon theory might be used to deduce the average water transit time inside the nanotube for ion rejection. We predict that for carbon nanotube membranes comprising nanotubes of radii lying between 3.4 and 3.9 ?, only water molecules will pass through, and sodium and chloride ions will not, which together using phonon theory, we deduce that the smaller the nanotube radius, the lower the average water transit time and the higher the efficiency of the membrane for ion rejection purposes. The present theoretical approach has the merit of rapid computational times and indicates those nanotube radii where future experimental work might be focussed.  相似文献   

6.
Single-wall carbon nanotubes were synthesized on specified parts of oxidized silicon substrates by single acetylene burst CVD and studied with high-resolution scanning electron and scanning probe micro-scopes. The resistance of individual nanotubes and nanotube series was measured using devices fabricated by the deposition of Pd and Pd/Al electrodes on the obtained single-wall nanotubes. The contact potential difference between Pd electrodes and carbon nanotubes was measured in the Kelvin mode of a scanning probe microscope.  相似文献   

7.
The interaction of DNA samples extracted from tobacco leaves of two types with carbon nanotubes (CNTs) was studied. Atomic-force microscopy images of DNA-CNT complex films were obtained. The possibility of forming ordered self-assembling structures in a DNA-CNT film was shown.  相似文献   

8.
The temperature dependences of the number of nucleating single-walled and few-walled nanotubes and their diameter have been determined over a wide range of model parameters in the framework of the problem regarding the nucleation of carbon nanotubes from catalytic particles supersaturated with carbon. It has been demonstrated that, initially, individual nanotubes nucleate and grow and, then, they can be joined together into bundles. The mechanism of the formation of bundles in the proposed model follows from the quantum-chemical analysis of the steady-state growth of nanotubes at the level of release of individual carbon atoms. During the growth, the axis of the nanotube rotates about the normal to the surface of the catalytic particle. This leads to the cross-linking of nanotubes into bundles. The characteristic diagram of the regions of the existence of individual single-walled, few-walled, and multiwalled nanotubes and their bundles has been constructed as a function of the temperature and the size of catalytic particles.  相似文献   

9.
Nitrogen-containing carbon nanotubes are synthesized using a gas-phase reaction. The synthesis of nitrogen-doped carbon nanotubes from 100 to 500 Å in diameter is accomplished through pyrolysis of acetonitrile (CH3CN) at a temperature of 800°C. Cobalt and nickel metallic particles formed upon thermal decomposition of a mixture of maleate salts are used as catalysts. The materials synthesized are investigated by scanning and transmission electron microscopy. Analysis of the x-ray photoelectron spectra demonstrates that the content of nitrogen atoms in three nonequivalent charge states is approximately equal to 3%. A comparison of the CK α x-ray fluorescence spectrum of the carbon nanotubes synthesized through electric-arc evaporation of graphite and the x-ray fluorescence spectrum of the nitrogen-containing carbon nanotubes prepared by catalytic decomposition of acetonitrile indicates that, in the latter case, the spectrum contains a certain contribution from the sp 3 states of carbon atoms. The temperature dependences of the electrical conductivity for different types of multi-walled carbon nanotubes are compared. The difference observed in the temperature dependences of the electrical conductivity is associated with the presence of additional scattering centers in nitrogen-containing carbon nanotubes.  相似文献   

10.
Atomic models are applied to investigate quasi-one-dimensional composites. The study presents the theoretical prediction of stable double-helix carbon chains growing inside single-walled carbon nanotubes as a function of tube radius. Meanwhile, our analysis shows that metastable structures may co-existence with the stable one, for small tubes. The classical molecular dynamics simulation shows that the regular and distorted double-helix C-chains are obtained with the tube's diameter smaller and larger than 13.32 Å, respectively. The temperature plays a minor role in the stable carbon chain structure unit it increases to 2500 K. The geometry optimization and the electronic structural analysis of the obtained optimal structure by the DFT calculation further justify our classical force field analysis. The electronic structure of SWCNTs can be significantly modified by the inserted carbon chain. The orbital hybridization between the host-guest molecules plays a key role in stabilizing the encapsulated double-helix carbon chain. Finally, X-ray powder diffraction (XRD) patterns of stable helical structures inside armchair tubes are presented for guidance of future experimental analyses.  相似文献   

11.
Adsorption on single walled carbon nanotubes (SWCNTs) is a subject of growing experimental and theoretical interest. The possible adsorbed patterns of atoms and molecules on the single-walled carbon nanotubes vary with the diameters and chirality of the tubes due to the confinement. The curvature of the carbon nanotube surface enlarges the distance of the adsorbate atoms and thus enhances the stability of high coverage structures of adsorbate. There exist two novel high-coverage stable structures of potassium adsorbed on SWCNTs, which are not stable on graphite. The electronic properties of SWCNTs can be modified by adsorbate atoms and metal-semiconductor and semiconductor-semi-conductor transitions can be achieved by the doping of alkali atoms.  相似文献   

12.
13.
The problems of the electric field action on carbon nanotubes (CNTs) during their growth and under the electron field emission conditions are considered. The relations determining the growth rate of an extended structure under the action of the electric field are established. The relation connecting the angle of orientation of a CNT inclined to the substrate surface and the applied electric field is used for computing current-voltage characteristics of the cathode consisting of inclined CNTs. The degree of deviation of these characteristics from the Fowler-Nordheim classic dependence is determined, on the one hand, by the parameters characterizing the CNT spread over the angles of inclination and, on the other hand, by the value of the Young modulus characterizing the bending stiffness of a nanotube. It is shown that in zero external electric field, a certain effect on the CNT orientation can be produced by the CNT potential relative to the substrate, which is due to the effect of the contact potential difference.  相似文献   

14.
We study the collective vibrational breathing modes in the Raman spectrum of multiwalled carbon nanotubes (MCNTs). First, a bond polarization theory and the spectral moment's method (SMM) are used to calculate the non-resonant Raman frequencies of the breathing-like modes (BLMs) and the tangential-like ones (TLMs). Second, the Raman active modes of MCNTs are computed for different diameters and numbers of layers. The obtained low frequency modes in MCNTs can be identified to each single-walled carbon nanotubes. These modes that originate from the radial breathing ones of the individual walls are strongly coupled through the concentric tube–tube van der Waals interaction. The calculated BLMs in the low-frequency region are compared with the experimental Raman data obtained from other studies. Finally, special attention is given to the comparison with Raman data on MCNTs composed of six layers.  相似文献   

15.
A new mechanism is proposed for the energy relaxation of hot carriers in single-wall carbon nanotubes: scattering with the emission of surface optical phonons into the semiconductor substrate. The theory involves intrasubband and intersubband forward and backward scattering. The analytical result and numerical data indicate that intrasubband forward scattering is the main process: the corresponding lifetime comprises several femtoseconds for a quartz substrate, which allows this mechanism of energy relaxation to be considered dominating for a nanotube on the surface of a polar semiconductor or a dielectric.  相似文献   

16.
The capacitive properties of graphene nanoribbons (GNRs) with different reduction levels were investigated. GNRs have been synthesized through thermal reduction of oxidized GNRs in the temperature range 100–400 °C. Oxidized GNRs were synthesized by longitudinal unzipping of multi-walled carbon nanotubes (MWCNTs) by means of chemical treatments. Scanning electron microscopy and transmission electron microscopy observations showed, that the efficient tube unzipping yielded improved effective surface area without any tube annihilation by the unzipping process of MWCNTs. Electrochemical studies indicated that through unzipping of MWCNTs, specific capacitance increased from 8 to 28 F g−1 at discharge current density of 0.5 A g−1, confirming increased active surface area and increased defect density in the MWCNTs surface. Unzipping of MWCNTs resulted in decreased rate capability of the electrode because of low electrical conductivity due to oxidization during the unzipping process. Thermal reduction of unzipped sample affected both specific capacitance and rate capability of electrodes. The highest specific capacitance of 62 F g−1 at discharge current density of 0.5 A g−1 was obtained for the sample unzipped and thermally annealed at about 150 °C. The amount of oxygen-containing groups was shown to be an important factor influencing the performance of the GNRs. These results make unzipped MWCNTs promising electrode materials for supercapacitor applications.  相似文献   

17.
A method of surface curvature of carbon nanotubes has been proposed for quantitative estimation of the longitudinal conductivity of nanotubes. A dispersion relation for the electron spectrum of single-walled carbon nanotubes has been obtained analytically. The change in the zone structure of nanotubes of various types and diameters caused by taking into account the surface curvature has been analyzed. The temperature dependence of the longitudinal component of conductivity with allowance for the surface curvature for a series of nanotubes has been calculated. The comparison with the conductivity of a plane graphene has been performed. It has been shown that, in zig-zag tubes, the correction of the conductivity for the surface curvature decreases with an increase in temperature as well as with an increase in the radius of curvature.  相似文献   

18.
19.
Recently, Zheng and Jiang [Phys. Rev. Lett. 88, 045503 (2002)]] have proposed that multiwalled carbon nanotubes could be the basis for a new generation of nano-oscillators in the several gigahertz range. In this Letter, we present the first molecular dynamics simulation for these systems. Different nanotube types were considered in order to verify the reliability of such devices as gigahertz oscillators. Our results show that these nano-oscillators are dynamically stable when the radii difference values between inner and outer tubes are of approximately 3.4 A. Frequencies as large as 38 GHz were observed, and the calculated force values are in good agreement with recent experimental investigations.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号