首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
弱碱性介质中氯离子对铜电极腐蚀行为的影响   总被引:6,自引:0,他引:6  
应用循环伏安法、X射线光电子能谱法、电化学阻抗谱法以及现场椭圆偏光法研究了在弱碱性介质中添加Cl-对铜电极腐蚀行为的影响.结果表明, Cl-的加入能加剧铜电极的腐蚀,使腐蚀电流以及现场椭圆偏振参数Δ的变化范围都增大1个数量级, Cl-对Cu2O的掺杂将使铜电极的表面膜变得疏松,膜的耐蚀性变差.椭圆偏光实验不仅与电化学和能谱实验的结果一致,而且还能定性地、清楚地分辨出铜电极腐蚀过程中Cu2O的生成、Cl-对Cu2O的掺杂、CuO的生成等不同阶段;同时,利用恰当的模型还能定量地确定各个阶段铜电极表面膜的组成、厚度的变化,从而为研究铜电极的腐蚀与防护机理提供更多有用信息.  相似文献   

2.
覆铜板在NaCl溶液中的腐蚀电化学行为   总被引:2,自引:0,他引:2  
应用线性极化、循环伏安(CV)及电化学阻抗谱(EIS)等电化学方法对覆铜板(CCL)和纯铜的腐蚀电化学行为进行了研究和比较. 结果表明, 覆铜板的耐蚀性弱于纯铜, 其阳极溶解过程与纯铜有所不同; 在较低电位下, CCL 以铜的氯化络合物的形式溶解, CuCl-2的扩散为该过程的控制步骤; 随着电位的升高, 腐蚀产物CuCl在电极表面形成疏松多孔的膜, Cl-在膜中的传输成为溶解过程的控制步骤. 电极表面CuCl 膜的消长过程是产生感抗弧的主要原因.  相似文献   

3.
应用循环伏安法和现场椭圆偏光法研究了弱碱性介质中铜的腐蚀、钝化过程,并用二组分有效介质模型对光学实验结果进行了拟合。结果表明金属铜在腐蚀达到稳态时其表面氧化膜具有一定的组成和厚度;反应生成的CuO比Cu2O更为致密,因而对基体具有更好的保护作用;CuO的阴极还原过程可能会涉及到还原中间产物Cu^+的岐化反应,该岐化反应的进行有助于铜耐蚀性的提高;CuO的还原可以在小于-0.45V(vs.SCE)的电位范围内与Cu2O的还原同时进行,椭圆偏光实验不仅与电化学和光电化学实验的结果一致,还能定量地确定膜的厚度、折射率等性质;并根据有效介质模型,可以计算得到不同时刻电极表面膜组成的改变;从而为研究电极反应机理提供新的证据。  相似文献   

4.
采用动电位极化、循环伏安、交流阻抗和扫描电镜等技术研究了钽在四乙基氯化铵(TEA)乙醇溶液中的腐蚀行为.在循环伏安曲线的扫描初期,电极表面因存在一薄层氧化物膜而使得电流密度缓慢增加.后来钝化膜因受到氯离子的攻击而被击穿,即点蚀.扫描电镜图很好地显示出蚀孔的生长过程.点蚀电位随着TEA浓度的增加而下降,随着水含量的增加而上升.在所研究的温度范围内,电化学反应的活化能为36kJ/mol.所有电极电位下的交流阻抗图谱都包含两个时间常数,钝化膜电阻和电荷传递电阻均随电极电位的增加而下降.  相似文献   

5.
The reduction of the title complexes was studied by cyclic voltammetry in aqueous media. It proceeds through a one-electron process generating intermediate copper(I) dipeptide complexes. The copper(I) dipeptide complexes are found to be short-lived and undergo transformations eventually generating Cu0 at the mercury electrode. The unchanged fraction of the copper(I) species is re-oxidised to the copper(II) complexes. The Cu0 generated undergoes a two-electron oxidation at a more anodic potential than the copper(I) complexes. pH-dependence of the title complexes is also investigated by cyclic voltammetry.  相似文献   

6.
Compared to bulk gold, highly reactive mesoporous gold film deposits are prepared on a boron‐doped diamond electrode surface. An electroaggregation process causing 5 nm diameter gold nanoparticles to deposit cathodically from aqueous solution is implemented to control the amount of mesoporous gold at the electrode surface. The resulting electrode surface is characterized by electron microscopy and by cyclic voltammetry.  相似文献   

7.
Corrosion is a fundamental problem in electrochemistry and represents a mode of failure of technologically important materials. Understanding the basic mechanism of aqueous corrosion of metals such as Cu in presence of halide ions is hence essential. Using molecular dynamics simulations incorporating reactive force-field (ReaxFF), the interaction of copper substrates and chlorine under aqueous conditions has been investigated. These simulations incorporate effects of proton transfer in the aqueous media and are suitable for modeling the bond formation and bond breakage phenomenon that is associated with complex aqueous corrosion phenomena. Systematic investigation of the corrosion process has been carried out by simulating different chlorine concentration and solution states. The structural and morphological differences associated with metal dissolution in the presence of chloride ions are evaluated using dynamical correlation functions. The simulated atomic trajectories are used to analyze the charged states, molecular structure and ion density distribution which are utilized to understand the atomic scale mechanism of corrosion of copper substrates under aqueous conditions. Increased concentration of chlorine and higher ambient temperature were found to expedite the corrosion of copper. In order to study the effect of solution states on the corrosion resistance of Cu, partial fractions of proton or hydroxide in water were configured, and higher corrosion rate at partial fraction hydroxide environment was observed. When the Cl(-) concentration is low, oxygen or hydroxide ion adsorption onto Cu surface has been confirmed in partial fraction hydroxide environment. Our study provides new atomic scale insights into the early stages of aqueous corrosion of metals such as copper.  相似文献   

8.
The oxidation of phenol on the RuO2–TiO2/Ti electrode has been studied by cyclic voltammetry, polarization measurements, electrochemical impedance spectroscopy and potentiostatic transients in H2SO4 and NaCl aqueous solutions. A reaction path with polymerization as the main reaction and side reactions after the initial step, similar to the reaction path on other electrode materials, is suggested. The formation of a phenoxy radical in a diffusion-controlled irreversible process is the initial step. The polymerization of phenoxy radicals leads to the formation of porous polyoxyphenylene film, strongly adherent to the electrode surface. The cyclic voltammetry measurements indicate side products, which could be, according to the literature, of quinone-like structure. Polyoxyphenylene film inhibits further oxidation of phenol, although complete electrode passivation was not observed. The presence of polyoxyphenylene film does not influence the pseudocapacitive behaviour of the electrode to a great extent, since the polyoxyphenylene film covers dominantly the coating surface, while active sites placed within coating cracks remain uncovered. The film seems to be permeable for hydrogen ions and water molecules.  相似文献   

9.
A copper hexacyanoferrate film was obtained on a modified electrode prepared by self-assembly of 3-mercaptopropyltrimethoxysilane on a gold surface. The film thickness was controlled using a layer-by-layer technique to tune the electrocatalytic properties of the electrode. Two electrodes with different hexacyanoferrate film thicknesses were prepared via three immersions (AuS/CuHCF3) and six immersions (AuS/CuHCF6) of the film in the precursor solutions. Cyclic voltammetry data were obtained to determine the adequate film thickness. Scanning electron microscopy images showed a roughness increase due to the growth of the film thickness at the electrode surface. Electrochemical impedance spectroscopy showed distinct behavior for the two electrodes prepared; while diffusion and charge transfer processes can be observed in both electrodes, an additional capacitive process at intermediary frequencies was observed for the AuS/CuHCF6 electrode. The charge transfer resistance (R ct) for the AuS/CuHCF3 electrode (19.6 Ω cm2) was lower than for AuS/CuHCF6 (27.9 Ω cm2) due to the hexacyanoferrate film thickness, since the charge transfer process demands the simultaneous diffusion of K+ into the surface. Cyclic voltammetry was used to evaluate the application of the AuS/CuHCF3 electrode as an electrochemical sensor, revealing a linear correlation for hydrazine concentrations.  相似文献   

10.
The reduction of the title complexes is studied by cyclic voltammetry in aqueous media. It proceeds through a one-electron process generating the corresponding copper(I) amino acid complexes. The reduced copper(I) species undergo chemical reactions generating Cu(O) at the mercury electrode. The unreacted fraction of the copper(I) species is re-oxidised to the copper(II) complexes. The Cu(O) generated undergo a two-electron oxidation to Cu2+ at less cathodic potentials which get reduced to Cu(O) subsequently. pH-dependence of these complexes is also investigated.  相似文献   

11.
Copper complex dye (C.I. Direct Blue 200) film modified electrodes have been prepared by multiple scan cyclic voltammetry. The effect of solution pH and nature of electrode material on film formation was investigated. The optimum pH for copper complex film formation on glassy carbon was found to be 1.5. The mechanism of film formation on ITO seems to be similar to that on GC surface but completely different mechanism followed with gold electrode. Cyclic voltammetric features of our modified electrodes are in consistent with a surface‐confined redox process. The voltammetric response of modified electrode was found to be depending on pH of the contacting solution. UV‐visible spectra show that the nature of copper complex dye is identical in both solution phase and after forming film on electrode. The electrocatalytic behavior of copper complex dye film modified electrode towards oxidation of dopamine, ascorbic acid and reduction of SO52? was investigated. The oxidation of dopamine and ascorbic acid occurred at less positive potential on film electrode compared to bare glassy carbon electrode. Feasibility of utilizing our modified electrode in analytical estimation of dopamine, ascorbic acid was also demonstrated.  相似文献   

12.
The higher harmonic components available from large-amplitude Fourier-transformed alternating current (FT-ac) voltammetry enable the surface active state of a copper electrode in basic media to be probed in much more detail than possible with previously used dc methods. In particular, the absence of capacitance background current allows low-level Faradaic current contributions of fast electron-transfer processes to be detected; these are usually completely undetectable under conditions of dc cyclic voltammetry. Under high harmonic FT-ac voltammetric conditions, copper electrodes exhibit well-defined and reversible premonolayer oxidation responses at potentials within the double layer region in basic 1.0 M NaOH media. This process is attributed to oxidation of copper adatoms (Cu*) of low bulk metal lattice coordination numbers to surface-bonded, reactive hydrated oxide species. Of further interest is the observation that cathodic polarization in 1.0 M NaOH significantly enhances the current detected in each of the fundamental to sixth FT-ac harmonic components in the Cu*/Cu hydrous oxide electron-transfer process which enables the underlying electron transfer processes in the higher harmonics to be studied under conditions where the dc capacitance response is suppressed; the results support the incipient hydrous oxide adatom mediator (IHOAM) model of electrocatalysis. The underlying quasi-reversible interfacial Cu*/Cu hydrous oxide process present under these conditions is shown to mediate the reduction of nitrate at a copper electrode, while the mediator for the hydrazine oxidation reaction appears to involve a different mediator or active state redox couple. Use of FT-ac voltammetry offers prospects for new insights into the nature of active sites and electrocatalysis at the electrode/solution interface of Group 11 metals in aqueous media.  相似文献   

13.
Polyaniline(PANI)film was electrosynthesized on 304 stainless steel by cyclic voltammetry using aqueous oxalic acid as supporting electrolyte.The potential sweep rates were changed to achieve the PANI film with different thickness and structures.Protective properties of the PANI film for corrosion of stainless steel in 3% NaC1 aqueous solution were investigated by monitoring potentiodynamic polarization curves and electrochemical impedance spectroscopy(EIS).The results showed that the PANI film which was formed with lower sweep rate led to more positive shift of corrosion potential and greater charge transfer resistance,reflecting higher inhibition for corrosion of the stainless steel.  相似文献   

14.
The effects of the pretreatment of copper in benzimidazole solutions on the anodic reactions have been observed. The structures of the chemisorbed benzimidazole on copper were studied by using the infrared reflection-absorption technique and X-ray photoelectron spectroscopy. It was found that a compact film of benzimidazolato copper(I) was formed on the copper surface when copper was immersed in a stirred benzimidazole solution and cyclic voltammetry applied. This compact polymer film inhibited anodic oxidation effectively.  相似文献   

15.
Polypyrrole (PPy) coatings were synthesized on copper by electrochemical polymerization of pyrrole monomer in aqueous acidic and basic solutions by cyclic voltammetry. The coatings were characterized with CV, UV-visible absorption spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, and scanning electron microscopy (SEM) techniques. The corrosion protection aspects of PPy coatings have been investigated using the potentiodynamic polarization technique and electrochemical impedance spectroscopy (EIS). The potentiodynamic polarization measurements show that the PPy coating has ability to protect the copper against corrosion. It was concluded that a complete corrosion protective PPy film could not be obtained through direct electro-oxidation procedure. This may be due to copper dissolution in the monomer oxidation potential range.  相似文献   

16.
Electrochemical polymerization of tyramine was achieved on copper electrode surface from tyramine in 0.3 M oxalic acid (pH=1.2) solution by using cyclic voltammetry technique. The formation of polytyramine nanoparicles (PTN) were characterized by cyclic voltammetry (CV), fourier transform infrared‐attenuated total reflectance (FTIR‐ATR) spectroscopy and scanning electron microscopy (SEM). The corrosion behavior of PTN coated copper was investigated by means of the change of open circuit potential with exposure time (Eocp t), electrochemical impedance spectroscopy (EIS) and anodic polarization curves in 3.5 % NaCl solutions at room temperature. The obtained results showed the shift of corrosion potential toward positive values for electropolymerized copper and a significant decrease in corrosion current and corrosion rate in comparison with bare copper, so that the PTNs coating could be used as an important protection against corrosion of copper.  相似文献   

17.
The ionic liquid (IL) 2-butylthiolonium bis(trifluoromethanesulfonyl)amide, [mimSBu][NTf(2)], facilitates the efficient extraction of silver(I) from aqueous media via interaction with both the cation and anion components of the IL. Studies with a conventional aqueous-IL two phase system as well as microextraction of silver(I) by a thick IL film adhered to an electrode monitored in situ by cyclic voltammetry, established that [mimSBu][NTf(2)] can extract electroactive silver(I) ions from an aqueous solution. The pH of the aqueous phase decreases upon addition of [mimSBu](+), which is attributed to partial release of the hydrogen attached to the N(3) nitrogen atom of the imidazolium ring. The presence of silver(I) further increase the acidity of the aqueous phase as a consequence of coordination with the IL cation component. Voltammetric and (1)H and (13)C NMR techniques have been used to establish the nature of the silver(I) complexes extracted, and show that the form of interaction with the IL differs from that outlined previously for the extraction of copper(II). Insights on the competition established when silver(I) is extracted in the presence of copper(II) are provided. Finally, it is noted that metallic silver can be directly electrodeposited at the electrode surface after extraction of silver(I) into [mimSBu][NTf(2)] and that back extraction of silver(I) into aqueous media is achieved by addition of an acidic aqueous solution.  相似文献   

18.
An in situ technique for layer-by-layer electrochemical analysis of solid surfaces using the voltammetry of microparticles is presented. The method is based on the determination of several shape-dependent parameters for voltammetric curves recorded at a graphite pencil working electrode in contact with the sample, all immersed into aqueous electrolytes. Repetitive square wave voltammetry and sequential application of constant potential reductive steps and voltammetric scans yield discernible responses for the corrosion products distributed in stratified layers on metal-based surfaces. This methodology is applied to identify alteration products of copper and copper alloys distributed in different layers in copper coupons submitted to different corrosive treatments and a contemporary brass sculpture.  相似文献   

19.
樊金红  徐文英  高廷耀 《电化学》2005,11(3):341-345
应用循环伏安法和线性扫描伏安法研究水溶液中硝基苯在铜电极上的电还原特性及其电还原为苯胺的中间步骤和反应机理.结果表明:铜电极上硝基苯的还原电位在-0.58V和-1.32V左右(vs.SCE),溶液的酸性和碱性均有益于该还原反应的发生;还原过程伴有反应物吸附现象,当硝基苯浓度较大时,还原过程受传质过程控制;随着厌氧程度的提高,还原速率加快.  相似文献   

20.
《Electroanalysis》2005,17(19):1716-1726
Well‐adherent amine‐functionalized porous silica films have been deposited on gold electrodes by combining the self‐assembly technology, the sol–gel process, and the electrochemical modulation of pH at the electrode/solution interface. A partial self‐assembled monolayer of mercaptopropyl‐trimethoxysilane (MPTMS) was first formed on disposable gold electrodes from recordable CDs (Au‐CDtrodes). The so pretreated MPTMS‐Au‐CDtrodes were immersed in a stable sol solution (pH 3) containing (3‐aminopropyl)‐triethoxysilane (APTES) and tetraethoxysilane (TEOS). Polycondensation of the APTES and TEOS precursors was then achieved by applying a negative potential for a given period of time to generate a local pH increase at the electrode/solution interface and promote the deposition of the amine functionalized silica film adhering well to the electrode surface owing to the MPTMS monolayer acting somewhat as a “molecular glue”. Various parameters affecting the electrodeposition process have been studied and the film permeability to redox probes in solution was characterized by cyclic voltammetry. The amine‐functionalized silica film electrodes were then applied to the preconcentration of copper(II) species prior to their electrochemical detection by anodic stripping differential pulse voltammetry. Getting high sensitivity has however required the application of an electrochemical pre‐activation step as the majority of the organo‐functional groups were in the form of ammonium moieties (because the film was prepared from an acidic sol). This was achieved by applying a sufficiently negative potential to the electrode surface to reduce protons and increase consequently the amine‐to‐ammonium ratio within the film and, thus, the efficiency of the precocentration process. The resulting device was then optimized for copper(II) determination in hydroalcoholic medium, giving rise to a linear response in the 0.1–10 μM concentration range.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号