首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The layered P2-K4Co7O14 oxide has been prepared and characterized by means of X-ray diffraction, electrical conductivity, thermopower, and magnetic measurements. The crystal structure of K4Co7O14 (P6(3)/m space group, Z=2, a=7.5171(1) A, and c=12.371(1) A) consists of a stacking of slabs of edge-shared CoO6 octahedra with K+ ions occupying ordered positions in the interslab space, leading to a a0 radical7xa0 radical7 supercell. Potential energy calculations at 0 K are in good agreement with the ordered distribution of potassium ions in the (ab) plane. This oxide is metallic, and the magnetic susceptibility is of Pauli-type, which contrasts with the Curie-Weiss behavior of the homologous NaxCoO2 (x approximately 0.6) oxide with close alkali content. The thermopower at room temperature is about one-third that of polycrystalline Na0.6CoO2.  相似文献   

2.
The oxides of the SrCo(1-x)Sb(x)O(3-δ) perovskite family have been recently designed, characterized and described as cathode materials for solid-oxide fuel cells with competitive power performance in the temperature range 750-850 °C. They feature a number of interesting properties including a good electronic conductivity, low electrode polarization resistance and adequate thermal expansion; the crystal structure adopts a 3C corner-linked perovskite network with a considerable number of oxygen vacancies. This paper reports on the effects of Sb-doping on the crystal structure features, the Co oxidation state and magnetic properties related to the presence of spin-state transitions in the Co cations. A phase transition was observed from the tetragonal P4/mmm space group for x≤ 0.15 to the cubic Pm ?3m space group in the x = 0.2 composition from neutron powder diffraction data. For the tetragonal phases the oxygen vacancies were found to be ordered and localized in the axial O2 and equatorial O3 atoms surrounding the Co2 positions. A noticeable distortion of CoO(6) octahedra is observed for x = 0.05 and 0.1, exhibiting a charge-ordering with a mixed oxidation state of Co(3+/4+) at Co1 sites and Co(3+) at Co2 positions: the Jahn-Teller Co(3+) in an intermediate-spin configuration is responsible for the octahedral distortion. Increasing Sb contents promotes a higher average oxidation state of cobalt, from a valence of 3.2+ for x = 0.05 to 3.4+ for x = 0.2, inducing a decrease of the oxygen vacancies and favouring a random distribution over a Pm ?3m cubic symmetry. All the samples present an antiferromagnetic behaviour with a G-type (k = 0) magnetic structure. The increase of the Sb content induces the weakening of the crystal field (Δ(cf)) in the octahedral environment promoting the Co spin-transition from the intermediate-spin to the high-spin configuration, as evidenced by the decrease of the octahedral distortion, increment of the unit-cell volume and enhancement of the ordered magnetic moment.  相似文献   

3.
The antiferromagnetic structures of the layered oxychalcogenides (Sr(1-x)Ba(x))(2)CoO(2)Cu(2)S(2) (0 ≤ x ≤ 1) have been determined by powder neutron diffraction. In these compounds Co(2+) is coordinated by four oxide ions in a square plane and two sulfide ions at the apexes of an extremely tetragonally elongated octahedron; the polyhedra share oxide vertexes. The magnetic reflections present in the diffraction patterns can in all cases be indexed using a √2a × √2a × c expansion of the nuclear cell, and nearest-neighbor Co(2+) moments couple antiferromagnetically within the CoO(2) planes. The ordered magnetic moment of Co(2+) in Sr(2)CoO(2)Cu(2)S(2) (x = 0) is 3.8(1) μ(B) at 5 K, consistent with high-spin Co(2+) ions carrying three unpaired electrons and with an additional significant unquenched orbital component. Exposure of this compound to moist air is shown to result in copper deficiency and a decrease in the size of the ordered moment to about 2.5 μ(B); there is a strong correlation between the size of the long-range ordered moment and the occupancy of the Cu site. Both the tetragonal elongation of the CoO(4)S(2) polyhedron and the ordered moment in (Sr(1-x)Ba(x))(2)CoO(2)Cu(2)S(2) increase with increasing Ba content, and in Ba(2)CoO(2)Cu(2)S(2), which has Co(2+) in an environment that is close to purely square planar, the ordered moment of 4.5(1) μ(B) at 5 K is over 0.7 μ(B) larger than that in Sr(2)CoO(2)Cu(2)S(2), so the unquenched orbital component in this case is even larger than that observed in octahedral Co(2+) systems such as CoO. The experimental observations of antiferromagnetic ground states and the changes in properties resulting from replacement of Sr by Ba are supported by ab initio calculations on Sr(2)CoO(2)Cu(2)S(2) and Ba(2)CoO(2)Cu(2)S(2). The large orbital moments in these systems apparently result from spin-orbit mixing of the unequally populated d(xz), d(yz), and d(z(2)) orbitals, which are reckoned to be almost degenerate when the CoO(4)S(2) polyhedron reaches its maximum elongation. The magnitudes of the ordered moments in high-spin Co(2+) oxide, oxychalcogenide, and oxyhalide systems are shown to correlate well with the tetragonal elongation of the coordination environment. The large orbital moments lead to an apparently magnetostrictive distortion of the crystal structures below the Nee?l temperature, with the symmetry lowered from tetragonal I4/mmm to orthorhombic Immm and the size of the distortion correlating well with the size of the long-range ordered moment for all compositions and for temperature-dependent data gathered on Ba(2)CoO(2)Cu(2)S(2).  相似文献   

4.
Magnetic susceptibilities of ScyU1−yO2+x solid solutions have been measured from 2.7 K to room temperature. The magnetic moment and Weiss constant have been determined in the temperature range in which the Curie-Weiss law holds. For the solid solutions showing antiferromagnetic transition, the Néel temperature has also been determined. The substitution of Sc3+ for U4+ was found to effect not only magnetic dilution of UO2, but also oxidation of U4+ to U5+. Excess oxygen ions which entered the interstitial sites, weakened the antiferromagnetic interaction between uranium ions and oxidized U4+ to U5+. The effect of oxygen vacancies on the antiferromagnetic interaction was small in the concentration range of this experiment (0.8 a/o).  相似文献   

5.
Zheng YQ  Lin JL  Xu W  Xie HZ  Sun J  Wang XW 《Inorganic chemistry》2008,47(22):10280-10287
Seven new glutaric acid complexes, Co(H 2O) 5L 1, Na 2[CoL 2] 2, Na 2[L(H 2L) 4/2] 3, {[Co 3(H 2O) 6L 2](HL) 2}.4H 2O 4, {[Co 3(H 2O) 6L 2](HL) 2}.10H 2O 5, {[Co 3(H 2O) 6L 2]L 2/2}.4H 2O 6, and Na 2{[Co 3(H 2O) 2]L 8/2].6H 2O 7 were obtained and characterized by single-crystal X-ray diffraction methods along with elemental analyses, IR spectroscopic and magnetic measurements (for 1 and 2). The [Co(H 2O) 5L] complex molecules in 1 are assembled into a three-dimensional supramolecular architecture based on intermolecular hydrogen bonds. Compound 2 consists of the Na (+) cations and the necklace-like glutarato doubly bridged [ C o L 4 / 2 ] 2 - infinity 1 anionic chains, and 3 is composed of the Na (+) cations and the anionic hydrogen bonded ladder-like [ L ( H 2 L ) 4 / 2 ] 2 - infinity 1 anionic chains. The trinuclear {[Co 3(H 2O) 6L 2](HL) 2} complex molecules with edge-shared linear trioctahedral [Co 3(H 2O) 6L 2] (2+) cluster cores in 4 and 5 are hydrogen bonded into two-dimensional (2D) networks. The edge-shared linear trioctahedral [Co 3(H 2O) 6L 2] (2+) cluster cores in 6 are bridged by glutarato ligands to generate one-dimensional (1D) chains, which are then assembled via interchain hydrogen bonds into 2D supramolecular networks. The corner-shared linear [Co 3O 16] trioctahedra in 7 are quaternate bridged by glutarato ligands to form 1D band-like anionic {[Co 3(H 2O) 2]L 8/2} (2+) chains, which are assembled via interchain hydrogen bonds into 2D layers, and between them are sandwiched the Na (+) cations. The magnetic behaviors of 1 and 2 obey the Curie-Weiss law with chi m = C/( T - Theta) with the Curie constant C = 3.012(8) cm (3) x mol (-1) x K and the Weiss constant Theta = -9.4(7) K for 1, as well as C = 2.40(1) cm (3) x mol (-1) x K and Theta = -2.10(5) K for 2, indicating weak antiferromagnetic interactions between the Co(II) ions.  相似文献   

6.
The X-ray crystallographic structures, the magnetic susceptibilities from 2 to 300 K, and a theoretical analysis of the magnetism for a triangular and a tetranuclear molecule consisting of linked high-spin cobalt(II) centers are described. The interpretation of the magnetic data for the triangular compound [Co(depa)Cl](3) (depa is the anion of 2,2'-(bis-4-ethylpyridyl)amine), which has tetrahedrally coordinated Co(2+) ions, entails isotropic antiferromagnetic exchange interaction and antisymmetric exchange acting within the two low-lying spin doublets. Two strong isotropic ferromagnetic interactions have been modeled in the cuboidal compound Co(4)(DPM)(4)(CH(3)O)(4)(CH(3)OH)(4) (DPM represents the anion of dipivaloylmethane), which has octahedral coordination, and the system can be approximately considered as two weakly coupled S = 3 species.  相似文献   

7.
The crystal, electronic, and magnetic structures of the cobalt oxyselenide La(2)Co(2)O(3)Se(2) were investigated through powder neutron diffraction measurements and band structure calculations. This oxyselenide crystallizes in a tetragonal layered structure with space group I4/mmm. The Co ion is sixfold-coordinated by two oxide ions and four selenide ions, and the face-sharing CoO(2)Se(4) octahedra form Co(2)OSe(2) layers. The band structure calculations revealed that the Co ion is in the divalent high-spin state. Rietveld analysis of the neutron diffraction profiles below 200 K demonstrated that the Co moments have a noncollinear antiferromagnetic structure with the propagation vector k = (?, ?, 0). The ordered magnetic moment was determined to be 3.5 μ(B) at 10 K, and the directions of the nearest-neighbor Co moments are orthogonal each other in the c plane.  相似文献   

8.
Zhang YZ  Gao S  Wang ZM  Su G  Sun HL  Pan F 《Inorganic chemistry》2005,44(13):4534-4545
Six heterometallic compounds based on the building block [Cr(bpy)(CN)4]- (bpy = 2,2'-bipyridine) with secondary and/or tertiary coligands as modulators, {Mn(H2O)2[Cr(bpy)(CN)4]2}n (1), {Mn(bpy)(H2O)[Cr(bpy)(CN)4]2 x H2O}n (2), [Mn(bpy)2][Cr(bpy)(CN)4]2 x 5H2O (3), {[Mn(dca)(bpy)(H2O)][Cr(bpy)(CN)4] x H2O}n (4) (dca = N(CN)2(-)), {Mn(N3)(CH3OH)[Cr(bpy)(CN)4] x 2H2O}n (5), and {Mn(bpy)(N3)(H2O)[Cr(bpy)(CN)4] x H2O}2 (6), have been prepared and characterized structurally and magnetically. X-ray crystallography reveals that the compounds 1, 2, 4, and 5 consist of one-dimensional (1D) chains with different structures: a 4,2-ribbon-like chain, a branched zigzag chain, a 2,2-CC zigzag chain, and a 3,3-ladder-like chain, respectively. It also reveals that compound 3 has a trinuclear [MnCr2] structure, and compound 6 has a tetranuclear [Mn2Cr2] square structure. Magnetic studies show antiferromagnetic interaction between Cr(III) and Mn(II) ions in all compounds. All of the chain compounds exhibit metamagnetic behaviors with different critical temperatures (Tc) and critical fields (Hc; at 1.8 K): 3.2 K and 3.0 kOe for 1; 2.3 K and 4.0 kOe for 2; 2.1 K and 1.0 kOe for 4; and 4.7 K and 5.0 kOe for 5, respectively. The noncentrosymmetric compound 2 is also a weak ferromagnet at low temperature because of spin canting. The magnetic analyses reveal Cr-Mn intermetallic magnetic exchange constants, J, of -4.7 to -9.4 cm(-1) (H = -JS(Cr) x S(Mn)). It is observed that the antiferromagnetic interaction through the Mn-N-C-Cr bridge increases as the Mn-N-C angle (theta) decreases to the range of 155-180 degrees, obeying an empirical relationship: J = -40 + 0.2theta. This result suggests that the best overlap between t(2g) (high-spin Mn(II)) and t(2g) (low-spin Cr(III)) occurs at an angle of approximately 155 degrees.  相似文献   

9.
The platelike crystals of a series of novel molecular conductors, which are based on the pi-donor molecules BDT-TTP (2,5-bis(1,3-dithiol-2-ylidene)-1,3,4,6-tetrathiapentalene) with a tetrathiapentalene skeleton and lanthanide nitrate complex anions [Ln(NO3)x](3-x)(Ln = La, Ce, (Pr), Tb, Dy, Ho, Er, Tm, Yb, Lu) with localized 4f magnetic moments, were synthesized. Except for the Ce complex, the salts were composed of (BDT-TTP)(5)[Ln(NO(3))(5)] and were isostructural. Even though the Ce crystal had a different composition, (BDT-TTP)(6)[Ce(NO(3))(6)](C(2)H(5)OH)(x)() (x approximately 3), the crystals all had the space group P(-)1. Although the X-ray examination of the Pr salts was insufficient, the existence of two modifications was suggested in these systems by preliminary X-ray examination. Previously, we reported the crystal structures and unique magnetic properties of (BDT-TTP)(5)[Ln(NO(3))(5)] (Ln = Sm, Eu, Nd, Gd). Thus, by combining the results of this work with previous one, we for the first time succeeded in obtaining a complete set of organic conductors composed of the identical pi-donors (BDT-TTP in this case) and all the lanthanide nitrate complex anions (except the complex with Pm(3+)). The crystals were all metallic down to 2 K. Electronic band structure calculations resulted in two-dimensional Fermi surfaces, which was consistent with their stable metallic states. Except for the Lu complex, which lacked paramagnetic moments, the magnetic susceptibilities were measured on the six heavy lanthanide ion complex salts by a SQUID magnetometer (Ln = Tb, Dy, Ho, Er, Tm, Yb). The large paramagnetic susceptibilities, which were caused by the paramagnetic moments of the rare-earth ions, were obtained. The Curie-Weiss law fairly accurately reproduced the temperature dependence of the magnetic susceptibilities of (BDT-TTP)(5)[Ho(NO(3))(5)] in the experimental temperature range (2-300 K) and a comparatively large Weiss temperature (|THETAV;|) was obtained (THETAV;(Ho) = -15 K). A Weiss temperature (THETAV;(Tm) = -8 K) was also obtained for Tm. The |THETAV;| values of other (BDT-TTP)(5)[Ln(NO(3))(5)] salts and (BDT-TTP)(6)[Ce(NO(3))(6)](C(2)H(5)OH)x(x approximately 3) were as follows: |THETAV;|/K = 4 (Er), < or =2 (Ce, Tb, Dy, Yb). The comparatively strong intermolecular magnetic interaction between Ho(3+) ions, which was suggested by the |THETAV;| value, is inconsistent with the traditional image of strongly localized 4f orbitals shielded by the electrons in the outer 5s and 5p orbitals. The dipole interactions between Ln(3+) ions causing the Curie-Weiss behavior and the comparatively large THETAV; value of (BDT-TTP)(5)[Ho(NO(3))(5)] is inconsistent with the data, since the complexes exhibit isostructural properties and there is not a clear relationship between the magnitudes of THETAV; values and those of magnetic moments. Therefore, it is possible that the 4f orbitals of Ho atom are sensitive to the ligand field, which will have an effect on the orbital moment of the Ho(3+) ion and/or produce a small amount of mixing between 4f and ligand orbitals to give rise to "real" intermolecular antiferromagnetic interaction through intermolecular overlapping between pi (BDT-TTP) and ligand orbitals of lanthanide nitrate complex anions.  相似文献   

10.
The kinetic inertness of the hexaaquachromium(III) (kH2O=2.4x10(-6) s(-1)) has led to challenges with respect to incorporating CrIII ions into Prussian blue-type materials; however, hexakis(acetonitrile)chromium(III) was shown to be substantially more labile (approximately 10(4) times) and enables a new synthetic route for the synthesis of these materials via nonaqueous solvents. The synthesis, spectroscopic, and physical properties of Cr[M(CN)6] (M=V, Cr, Mn, Fe) Prussian blue analogues synthesized from [CrIII(NCMe)6]3+ and the corresponding [MIII(CN)6]3- are described. All these compounds {(NEt4)0.02CrIII[VIII(CN)6]0.98(BF4)(0.08).0.10MeCN (1), CrIII[CrIII(CN)6].0.16MeCN (2), CrIII[MnIII(CN)6].0.10MeCN (3), and (NEt4)0.04CrIII0.64CrIV0.40[FeII(CN)6]0.40[FeIII(CN)6]0.60(BF4)(0.16).1.02MeCN (4)} are ferrimagnets exhibiting cluster-glass behavior. Strong antiferromagnetic coupling was observed for M=V, Cr, and Mn with Weiss constants (theta) ranging from -132 to -524 K; and in 2, where the strongest coupling is observed (theta=-524 K), the highest Tc (110 K) value was observed. Weak antiferromagnetic coupling was observed for M=Fe (theta=-12 K) leading to the lowest Tc (3 K) value in this series. Weak coupling and the low Tc value observed in 4 were additionally contributed by the presence of both [FeII(CN)6]4- and [FeIII(CN)6]3- as confirmed by 57Fe-M?ssbauer spectroscopy.  相似文献   

11.
We have used aqueous NaMnO4 solution as the deintercalation and oxidation agent to treat gamma-Na0.7CoO2 powders and to successfully obtain superconducting sodium cobalt oxyhydrates, Nax(H2O)yCoO2, with onset Tc approximately 4.6 K without using highly toxic Br2/CH3CN solution. Chemical analyses indicate that the sodium content x decreases with increasing concentration of NaMnO4 solution and depends slightly on the immersion time. Unlike using a high concentration of aqueous KMnO4 as the deintercalation and oxidation agent, all the hydrated products are the c approximately 19.6 A phase with bilayers of water molecules intercalated between the CoO2 layers and sodium layers because of the absence of K+ in the Na+ layers.  相似文献   

12.
The ground-state properties of the pentameric Co(II) cluster [Co(3)W(D(2)O)(2)(CoW(9)O(34))(2)](12-) were investigated by combining magnetic susceptibility and low-temperature magnetization measurements with a detailed inelastic neutron scattering (INS) study on a fully deuterated polycrystalline sample of Na(12)[Co(3)W(D(2)O)(2)(CoW(9)O(34))(2)].46D(2)O. The encapsulated magnetic Co(5) unit consists of three octahedral and two tetrahedral oxo-coordinated Co(II) ions. Thus, two different types of exchange interactions are present within this cluster: a ferromagnetic interaction between the octahedral Co(II) ions and an antiferromagnetic interaction between the octahedral and the tetrahedral Co(II) ions. As a result of the single-ion anisotropy of the octahedral Co(II) ions, the appropriate exchange Hamiltonian to describe the ground-state properties of the Co(5) spin cluster is anisotropic and is expressed as H = -2 summation operator(i= x,y,z)J(1)(i)[S(1)(i)S(2)(i) + S(2)(i)S(3)(i)] + J(2)(i)[S(1)(i)S(5)(i) + S(2)(i)S(5)(i) + S(2)(i)S(6)(i) + S(3)(i)S(6)(i)], where J(1)(i) are the components of the exchange interaction between the octahedral Co(II) ions and J(2)(i) are the components of the exchange interaction between the octahedral and tetrahedral Co(II) ions (see Figure 1d). The study of the exchange interactions in the two structurally related polyoxoanions [Co(4)(H(2)O)(2)(PW(9)O(34))(2)](10)(-) and [Co(3)W(H(2)O)(2)(ZnW(9)O(34))(2)](12)(-) allowed an independent determination of the ferromagnetic exchange parameters J(1)(x) = 0.70 meV, J(1)(y) = 0.43 meV, and J(1)(z) = 1.51 meV (set a) and J(1)(x) = 1.16 meV, J(1)(y) = 1.16 meV and J(1)(z) = 1.73 meV (set b), respectively. Our analysis proved to be much more sensitive to the size and anisotropy of the antiferromagnetic exchange interaction J(2). We demonstrate that this exchange interaction exhibits a rhombic anisotropy with exchange parameters J(2)(x) = -1.24 meV, J(2)(y) = -0.53 meV, and J(2)(z) = -1.44 meV (set a) or J(1)(x) = -1.19 meV, J(1)(y) = -0.53 meV, and J(1)(z) = -1.44 meV (set b). The two parameter sets reproduce in a satisfactory manner the susceptibility, magnetization, and INS properties of the title compound.  相似文献   

13.
To obtain novel single-component molecular metals, we attempted to synthesize several cobalt complexes coordinated by TTF (tetrathiafulvalene)-type dithiolate ligands. We succeeded in the syntheses and structure determinations of ((n)Bu(4)N)(2)[Co(chdt)(2)](2) (1), ((n)Bu(4)N)(2)[Co(dmdt)(2)](2) (2), [Co(dmdt)(2)](2) (3), and [Co(dt)(2)](2) (4) (chdt = cyclohexeno-TTF-dithiolate, dmdt = dimethyl-TTF-dithiolate, and dt = TTF-dithiolate). Structure analyses of complexes 1-4 revealed that two monomeric [Co(ligand)2]- or [Co(ligand)(2)](0) units are connected by two Co-S bonds resulting in dimeric [Co(ligand)(2)](2)(2-) or [Co(ligand)(2)](2) molecules. Complex 1 has a cation-anion-intermingled structure and exhibited Curie-Weiss magnetic behavior with a large Curie constant (C = 2.02 K x emu x mol(-1)) and weak antiferromagnetic interactions (theta = -8.3 K). Complex 2 also has a cation-anion-intermingled structure. However, the dimeric molecules are completely isolated by cations. Complexes 3 and 4 are single-component molecular crystals. The molecules of complex 3 form two-dimensional molecular stacking layers and exhibit a room-temperature conductivity of sigmart = 1.2 x 10(-2) S.cm(-1) and an activation energy of E(a) = 85 meV. The magnetic behavior is almost consistent with Curie-Weiss law, where the Curie constant and Weiss temperature are 8.7 x 10(-2) K x emu x mol(-1) and -0.85 K, respectively. Complex 4 has a rare chair form of the dimeric structure. The electrical conductivity was fairly large (sigmart = 19 S.cm(-1)), and its temperature dependence was very small (sigma(0.55K)/sigma(rt) = ca. 1:10), although the measurements were performed on the compressed pellet sample. Complex 4 showed an almost constant paramagnetic susceptibility (chi(300) (K) = 3.5 x 10(-4) emu x mol(-1)) from 300 to 50 K. The band structure calculation of complex 4 suggested the metallic nature of the system. Complex 4 is a novel single-component molecular conductor with a dimeric molecular structure and essentially metallic properties down to very low temperatures.  相似文献   

14.
A theoretical method for studying the local lattice structure of Ni2+ ions in (NiF6)(4-) coordination complex is presented. Using the ligand-field model, the formulas relating the microscopic spin Hamiltonian parameters with the crystal structure parameters are derived. Based on the theoretical formulas, the 45 x 45 complete energy matrices for d8 (d2) configuration ions in a tetragonal ligand-field are constructed. By diagonalizing the complete energy matrices, the local distortion structure parameters (R perpendicular and R || ) of Ni2+ ions in K2ZnF4:Ni2+ system have been investigated. The theoretical results are accorded well with the experimental values. Moreover, to understand the detailed physical and chemical properties of the fluoroperovskite crystals, the theoretical values of the g factor of K2ZnF4:Ni2+ system at 78 and 290 K are reported first.  相似文献   

15.
Five kinds of (1:1), (1:3), and (2:1) salts of 3-[4-(diethylmethylammonio)phenyl]-1,5-diphenyl-6-oxoverdazyl radical cation [V](+) with M(dmit)(2) anions (M = Ni, Zn, Pd, and Pt, dmit = 1,3-dithiol-2-thione-4,5-dithiolate) ([V](+)[Ni(dmit)(2)](-) (1), [V](+)[Ni(dmit)(2)](3)(-) (2), [V](+)(2)[Zn(dmit)(2)](2-) (3), [V](+)(2)[Pd(dmit)(2)](2-) (4), and [V](+)(2)[Pt(dmit)(2)](2-) (5)) and an iodide salt of [V](+) ([V](+)[I](-) (6)) have been prepared, and the magnetic susceptibilities (chi(M) values) have been measured between 1.8 and 300 K. The chi(M) of the (1:1) Ni salt (1) can be well reproduced by the sum of the contributions from (i) a Curie-Weiss system with a Curie constant (C) of 0.376 K emu/mol and a negative Weiss constant (theta) of -1.5 K and (ii) the one-dimensional Heisenberg antiferromagnetic alternating chain system with 2J(A-B)/k(B) = -274 K (alternation parameter alpha = J(A-C)/J(A-B) = 0.2). The chi(M) of the (1:3) Ni salt (2) can be well explained by the two-term contributions from (i) the Curie-Weiss system with C = 0.376 K emu/mol and theta = -5.0 K and (ii) the dimer system with 2J/k(B) = -258 K. The magnetic properties of 1 and 2 were discussed based on the results obtained by crystal structure analysis and ESR measurements of 1 and 2. The chi(M) values of the (2:1) Zn, Pd, Pt salts 3, 4, and 5 and [V](+)[I](-) salt 6 follow the Curie-Weiss law with C = 0.723, 0.713, 0.712, and 0.342 K emu/mol and theta = -2.8, -3.1, -2.6, and +0.02 K, respectively, indicating that only the spins of the verdazyl radical cation contribute to the magnetic property of these salts. The salts 1, 3, and 5 are insulators. On the other hand, the conductivity (sigma) of the Ni salt 2 and Pd salt 4 at 20 degrees C was sigma = 8.9 x 10(-2) and 1.3 x 10(-4) S cm(-)(1) with an activation energy E(A) = 0.11 and 0.40 eV, respectively. The salts 2 and 4 are new molecular magnetic semiconductors.  相似文献   

16.
The crystal structure of the layered cobalt oxyfluoride Sr(2)CoO(3)F synthesized under high-pressure and high-temperature conditions has been determined from neutron powder diffraction and synchrotron powder diffraction data collected at temperatures ranging from 320 to 3 K. This material adopts the tetragonal space group I4/mmm over the measured temperature range and the crystal structure is analogous to n = 1 Ruddlesden-Popper type layered perovskite. In contrast to related oxyhalide compounds, the present material exhibits the unique coordination environment around the Co metal center: coexistence of square pyramidal coordination around Co and anion disorder between O and F at the apical sites. Magnetic susceptibility and electrical resistivity measurements reveal that Sr(2)CoO(3)F is an antiferromagnetic insulator with the Néel temperature T(N) = 323(2) K. The magnetic structure that has been determined by neutron diffraction adopts a G-type antiferromagnetic order with the propagation vector k = (1/2 1/2 0) with an ordered cobalt moment μ = 3.18(5) μ(B) at 3 K, consistent with the high spin electron configuration for the Co(3+) ions. The antiferromagnetic and electrically insulating states remain robust even against 15%-O substation for F at the apical sites. However, applying pressure exhibits the onset of the metallic state, probably coming from change in the electronic state of square-pyramidal coordinated cobalt.  相似文献   

17.
The redox properties of MCl2 (M=Mn, Fe, Co) acetonitrile solvates were electrochemically and spectroscopically characterized. The three voltammogram waves at 0.86, 0.48, and 0.21 V versus SCE for FeCl(2) dissolved in MeCN are assigned as one-electron reduction potentials for [Fe(II)Cl(x)(NCMe)4-x]2-x (1相似文献   

18.
Na(10)Co(4)O(10) was investigated by neutron powder diffraction at 230, 70, and 4 K. The crystal structure, determined previously by X-ray diffraction on single crystals, was confirmed. Na(10)Co(4)O(10) orders magnetically below 37 K. All observed magnetic reflections could be indexed by integers (hkl) with respect to the chemical unit cell and the magnetic propagation vector q=0. The refinement was performed in the Shubnikov space group C2/c and indicated a collinear antiferromagnetic spin structure. The determined spin arrangement is consistent with the magnetic intratetramer interactions suggested previously from the analysis of magnetic susceptibility data: the magnetic moments of the central Co(III) ions of the Co(4)O(10) tetramer lie parallel to each other and couple in an antiparallel fashion to the terminal Co(II) moments. The Rietveld analysis shows that the net moments of 0.64 mu(B) per tetramer form ferromagnetic layers parallel to the ab plane. Adjacent layers are coupled antiferromagnetically along c. The spins are aligned in the ac plane along the line connecting adjacent Co(II) and Co(III) ions of the tetramer. We have determined unusually low values for the ordered magnetic moments of 2.43(5) mu(B) and 2.11(6) mu(B) for Co(III) and Co(II), respectively. The occurrence of spontaneous magnetization below 37 K indicates a slight canting of 2.2 degrees of the antiferromagnetic structure. A representation analysis shows that a weak ferromagnetic component along b is compatible with the determined antiferromagnetic structure.  相似文献   

19.
The crystal structures and magnetic properties of melilite-type oxides Sr(2)MGe(2)O(7) (M = Mn, Co) were investigated. These compounds crystallize in the melilite structure with space group P ?42(1)m, in which the M and Ge ions occupy two kinds of tetrahedral sites in an ordered manner. The magnetic M ions form a square-planar lattice in the ab plane. Both compounds do not show the structural phase transition down to 2.5 K. The temperature dependence of magnetic susceptibility for Sr(2)MnGe(2)O(7) shows a broad peak at ~6.0 K because of a two-dimensional magnetic interaction between Mn ions in the ab plane. At 4.4 K, an antiferromagnetic transition was observed. The magnetic structure was determined by the neutron powder diffraction measurements at 2.5 K. It can be represented by the propagation vector k = (0, 0, 1/2), and the magnetic moments of Mn(2+) (3.99 μ(B)) ions order antiferromagnetically in a collinear manner along the c axis. On the other hand, Sr(2)CoGe(2)O(7) shows an antiferromagnetic transition at 6.5 K with divergence between zero-field-cooled and field-cooled susceptibilities. Its magnetic structure determined at 2.5 K has a magnetic propagation vector k = (0, 0, 0), and the ordered magnetic moment of Co(2+) (2.81 μ(B)) adopts a collinear arrangement lying on the ab plane.  相似文献   

20.
Three new isomorphic coordination polymers of Co(2+), Zn(2+) ions with flexible multicarboxylic acid ligand of the cis,cis,cis-1,2,3,4-cyclopentanetetracarboxylic acid (H(4)L), [Co(4)L(2)(H(2)O)(8)]·3H(2)O (1), [Zn(4)L(2)(H(2)O)(8)]·3H(2)O (2) and [Co(0.8)Zn(3.2)L(2)(H(2)O)(8)]·3H(2)O (3), have been synthesized under hydrothermal conditions and by means of controlling the pH of the reaction mixtures (with an initial pH of 6.0 for 1, 4.0 for 2, and 5.0 for 3, respectively). In the crystal of 1, two crystallographically different Co(2+) ions (Co1 and Co2) form a negatively-charged coordination polymeric chain, which contains a centrosymmetric, linear, trinuclear Co(2+) cluster (Co(3)L(2)) subunit; another crystallographically independent Co(2+) ion (Co3) coordinated to six water molecules acts as a counter ions to link the neighboring coordination polymeric chains via intermolecular H-bond interactions. The Co(2+) ions in 1 were completely and partially replaced by Zn(2+) ions to give 2 and 3, respectively. Complex 3 shows a novel molecular alloy nature, due to the random distributions of the Co(2+) and Zn(2+) ions. Three isomorphic complexes exhibit distinct thermal decomposition mechanisms. The deprotonated cis,cis,cis-1,2,3,4-cyclopentanetetracarboxylic acid ligands decompose at 420-750 °C to give the residue CoO in 1, ZnO + C in 2 and CoO + ZnO in 3. Complex 1 shows a complicated magnetic behavior with co-existence of antiferromagnetic exchange interactions between neighboring Co(2+) ions as well as strong spin-orbital coupling interactions for each Co(2+) ion; complex 3 exhibits a magnetically isolated high-spin Co(2+) ion behavior with strong spin-orbital coupling interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号