首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, a tracking method is proposed for the expansion of gas flow into vacuum which may be combined with numerical methods for the equations of gas dynamics, the Euler equations. This tracking prevents the difficulties of the numerical approximation introduced by the vacuum as a region where the Euler equations are not valid due to the failure of the continuum assumption. The tracking algorithm is based on the exact or an approximate solution of the vacuum Riemann problem. This is the initial value problem with two constant states, one being the gas and the other the vacuum state, and a limit case of the usual Riemann problem. In this approach, the gas–vacuum boundary is sharply resolved within one mesh interval. For a test problem, the numerical results of gas flow into vacuum are presented which indicate that the gas vacuum boundary is captured very well.  相似文献   

2.
From the observation that self-similar solutions of conservation laws in two space dimensions change type, it follows that for systems of more than two equations, such as the equations of gas dynamics, the reduced systems will be of mixed hyperbolic-elliptic type, in some regions of space. In this paper, we derive mixed systems for the isentropic and adiabatic equations of compressible gas dynamics. We show that the mixed systems which arise exhibit complicated nonlinear dependence. In a prototype system, the nonlinear wave system, this behavior is much simplified, and we outline the solution to some typical Riemann problems.Dedicated to Constantine Dafermos on his 60th birthdayResearch supported by the National Science Foundation, grant DMS-9970310.Research supported by the Department of Energy, grant DE-FG-03-94-ER25222 and by the National Science Foundation, grant DMS-9973475 (POWRE).Research supported by the Department of Energy, grant DE-FG-03-94-ER25222 and by the National Science Foundation, grant DMS-0103823.  相似文献   

3.
An important problem in gas and fluid dynamics is to understand the behavior of vacuum states, namely the behavior of the system in the presence of a vacuum. In particular, physical vacuum, in which the boundary moves with a nontrivial finite normal acceleration, naturally arises in the study of the motion of gaseous stars or shallow water. Despite its importance, there are only a few mathematical results available near a vacuum. The main difficulty lies in the fact that the physical systems become degenerate along the vacuum boundary. In this paper, we establish the local‐in‐time well‐posedness of three‐dimensional compressible Euler equations for polytropic gases with a physical vacuum by considering the problem as a free boundary problem. © 2015 Wiley Periodicals, Inc.  相似文献   

4.
In this paper, we introduce systems of Volterra integral forms of the Lane–Emden equations. We use the systematic Adomian decomposition method to handle these systems of integral forms. The Volterra integral forms overcome the singular behavior at the origin x = 0. The Adomian decomposition method gives reliable algorithm for analytic approximate solutions of these systems. Our results are supported by investigating several numerical examples. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
An important problem in the theory of compressible gas flows is to understand the singular behavior of vacuum states. The main difficulty lies in the fact that the system becomes degenerate at the vacuum boundary, where the characteristic speeds u ± c coincide and have unbounded spatial derivative since c behaves like x1/2 close to the boundary. In this paper, we overcome this difficulty by presenting a new formulation and new energy spaces. We establish the local‐in‐time well‐posedness of one‐dimensional compressible Euler equations for isentropic flows with the physical vacuum singularity in some spaces adapted to the singularity. © 2009 Wiley Periodicals, Inc.  相似文献   

6.
Jacobi–Gauss-type interpolations are considered. Some approximation results in certain Hilbert spaces are established. They are used for numerical solutions of singular differential equations and other related problems. The numerical results are illustrated.  相似文献   

7.
8.
In this paper we consider a linear three-dimensional structural acoustic model which takes account of displacement, rotational inertia and shear effects in the flat flexible structural component of the model. Thus the deflections of the structural component of the structure are governed by the Reissner–Mindlin plate equations. We show strong stabilization of the coupled model without incorporating viscous or boundary damping in the equations for the gas dynamics and without imposing geometric conditions. It turns out that damping is needed in the interior of the plate, to which end Kelvin–Voigt damping is introduced in the plate equations. As our main tool we use a resolvent criterion for strong stability due to Tomilov.  相似文献   

9.
The phenomena of concentration and cavitation and the formation of δ-shocks and vacuum states in solutions to the isentropic Euler equations for a modified Chaplygin gas are analyzed as the double parameter pressure vanishes. Firstly, the Riemann problem of the isentropic Euler equations for a modified Chaplygin gas is solved analytically. Secondly, it is rigorously shown that, as the pressure vanishes, any two-shock Riemann solution to the isentropic Euler equations for a modified Chaplygin gas tends to a δ-shock solution to the transport equations, and the intermediate density between the two shocks tends to a weighted δ-measure that forms the δ-shock; any two-rarefaction-wave Riemann solution to the isentropic Euler equations for a modified Chaplygin gas tends to a two-contact-discontinuity solution to the transport equations, the nonvacuum intermediate state between the two rarefaction waves tends to a vacuum state. Finally, some numerical results exhibiting the formation of δ-shocks and vacuum states are presented as the pressure decreases.  相似文献   

10.
This article is concerned with the asymptotic accuracy of the Computational Singular Perturbation (CSP) method developed by Lam and Goussis [The CSP method for simplifying kinetics, Int. J. Chem. Kin. 26 (1994) 461–486] to reduce the dimensionality of a system of chemical kinetics equations. The method, which is generally applicable to multiple-time scale problems arising in a broad array of scientific disciplines, exploits the presence of disparate time scales to model the dynamics by an evolution equation on a lower-dimensional slow manifold. In this article it is shown that the successive applications of the CSP algorithm generate, order by order, the asymptotic expansion of a slow manifold. The results are illustrated on the Michaelis–Menten–Henri equations of enzyme kinetics.  相似文献   

11.
Divergence-measure fields are extended vector fields, including vector fields inL p and vector-valued Radon measures, whose divergences are Radon measures. Such fields arise naturally in the study of entropy solutions of nonlinear conservation laws and other areas. In this paper, a theory of divergence-measure fields is presented and analyzed, in which normal traces, a generalized Gauss-Green theorem, and product rules, among others, are established. Some applications of this theory to several nonlinear problems in conservation laws and related areas are discussed. In particular, with the aid of this theory, we prove the stability of Riemann solutions, which may contain rarefaction waves, contact discontinuities, and/or vacuum states, in the class of entropy solutions of the Euler equations for gas dynamics.Dedicated to Constantine Dafermos on his 60th birthday  相似文献   

12.
A method for reducing systems of partial differential equations to corresponding systems of ordinary differential equations is proposed. A system of equations describing two-dimensional, cylindrical, and spherical flows of a polytropic gas; a system of dimensionless Stokes equations for the dynamics of a viscous incompressible fluid; a system of Maxwell’s equations for vacuum; and a system of gas dynamics equations in cylindrical coordinates are studied. It is shown how this approach can be used for solving certain problems (shockless compression, turbulence, etc.).  相似文献   

13.
In this article we will study the initial value problem for some Schrödinger equations with Dirac-like initial data and therefore with infinite L2 mass, obtaining positive results for subcritical nonlinearities. In the critical case and in one dimension we prove that after some renormalization the corresponding solution has finite energy. This allows us to conclude a stability result in the defocusing setting. These problems are related to the existence of a singular dynamics for Schrödinger maps through the so-called Hasimoto transformation.  相似文献   

14.
    
In this paper the extension of the Legendre least-squares spectral element formulation to Chebyshev polynomials will be explained. The new method will be applied to the incompressible Navier–Stokes equations and numerical results, obtained for the lid-driven cavity flow at Reynolds numbers varying between 1000 and 7500, will be compared with the commonly used benchmark results. The new results reveal that the least-squares spectral element formulations based on the Legendre and Chebyshev Gauss–Lobatto Lagrange interpolating polynomials are equally accurate.  相似文献   

15.
A two-dimensional self-similar problem of discharge of a heat conducting gas Into vacuum is analyzed. The temperature at the boundary of gas and vacuum is assumed to change as an exponential function of time. The coefficient of thermal conductivity depends exponentially on temperature and density. The initial gas density is assumed to be finite and constant. With definite values of exponents this problem is self-similar i.e. the system of partial differential equations can be reduced to the solution of a system of ordinary equations.

The self-modeling properties of solutions of this kind of problems has been noted earlier in [1 and 2]. The problem analyzed here is a particular case of the problem of piston motion considered in [3]. In this problem, however, there appears at the boundary of gas and vacuum a new singular point which does not occur in the piston problem.

A numerical solution of the boundary value problem defined by a system of ordinary equations is made difficult by the presence in the latter of singular points, and of discontinuities in the sought solution. These difficulties have been overcome by a qualitative analysis of the behavior of integral curves, and by the selection of a suitable method of numerical integration.

It is shown in this work that, depending on the initial parameters of the problem, there may exist two kinds of solutions. This had been noted earlier in [1, 3 and 4]. Examples of these are presented here. The degeneration of the solution into a trivial one, when the thermal conductivity coefficient is either invariant of density, or increases with increasing density, is pointed out.  相似文献   


16.
Consider the Cauchy problems for an n-dimensional nonlinear system of fluid dynamics equations. The main purpose of this paper is to improve the Fourier splitting method to accomplish the decay estimates with sharp rates of the global weak solutions of the Cauchy problems. We will couple together the elementary uniform energy estimates of the global weak solutions and a well known Gronwall''s inequality to improve the Fourier splitting method. This method was initiated by Maria Schonbek in the 1980''s to study the optimal long time asymptotic behaviours of the global weak solutions of the nonlinear system of fluid dynamics equations. As applications, the decay estimates with sharp rates of the global weak solutions of the Cauchy problems for $n$-dimensional incompressible Navier-Stokes equations, for the $n$-dimensional magnetohydrodynamics equations and for many other very interesting nonlinear evolution equations with dissipations can be established.  相似文献   

17.
The question of whether the two-dimensional (2D) nonbarotropic compressible magnetohydrodynamic (MHD) equations with zero heat conduction can develop a finite-time singularity from smooth initial data is a challenging open problem in fluid dynamics and mathematics. Such a problem is interesting in studying global well-posedness of solutions. In this paper, we proved that, for the initial density allowing vacuum states, the strong solution exists globally if the density and the pressure are bounded from above. Our method relies on weighted energy estimates and a Hardy-type inequality.  相似文献   

18.
C. Miao In this paper, we are concerned with the 1D Cauchy problem of the compressible Navier–Stokes equations with the viscosity μ(ρ) = 1+ρβ(β≥0). The initial density can be arbitrarily large and keep a non‐vacuum state at far fields. We will establish the global existence of the classical solution for 0≤β < γ via a priori estimates when the initial density contains vacuum in interior interval or is away from the vacuum. We will show that the solution will not develop vacuum in any finite time if the initial density is away from the vacuum. To study the well‐posedness of the problem, it is crucial to obtain the upper bound of the density. Some new weighted estimates are applied to obtain our main results. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
In this paper, we establish the existence of viscosity solutions of Hessian equations with singular right-hand sides and obtain the asymptotic boundary behavior of solutions. The asymptotic results generalize those for Poisson equations and Monge-Ampère equations, and are more precise than obtained from Hopf lemma.  相似文献   

20.
本文在R^(N)(N=2,3)中研究描述流向外部真空的可压缩流体的欧拉与欧拉-泊松方程组径向对称解的爆破.在分离流体与真空的连续自由边界条件下考虑其自由边值问题.对于径向对称的欧拉方程组,证明若初始流平均向外流动,则其光滑解将在有限时刻爆破.对于带有斥力与弛豫项的单极与双极径向对称欧拉-泊松方程组,证明若某个与初始动量有关的加权泛函适当大,则其光滑解将在有限时刻爆破。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号