首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 34 毫秒
1.
Alkynes can be metabolically incorporated into biomolecules including nucleic acids, proteins, lipids, and glycans. In addition to the clickable chemical reactivity, alkynes possess a unique Raman scattering within the Raman‐silent region of a cell. Coupling this spectroscopic signature with Raman microscopy yields a new imaging modality beyond fluorescence and label‐free microscopies. The bioorthogonal Raman imaging of various biomolecules tagged with an alkyne by a state‐of‐the‐art Raman imaging technique, stimulated Raman scattering (SRS) microscopy, is reported. This imaging method affords non‐invasiveness, high sensitivity, and molecular specificity and therefore should find broad applications in live‐cell imaging.  相似文献   

2.
3.
Different Pd‐complexes (see 2a – d and 3 ) with and without perfluoroalkyl tags were deposited on fluorous reversed‐phase silica 1 and unmodified silica gel. These supported complexes were successfully used as precatalysts for the Suzuki reaction in H2O. H2O‐Soluble aryl bromides were easily converted to the corresponding biphenyls. Although none of the complexes is H2O‐soluble, the active catalyst is most likely homogeneously dissolved. Nevertheless, the Pd‐leaching into the product was low.  相似文献   

4.
5.
Steric hindrance by a metal–organic framework (MOF) is shown to influence the outcome of a catalytic reaction by controlling the orientation of its intermediates. This is demonstrated using an organocatalyst, phosphine MOF LSK‐3, which is evaluated with the aid of molecular modeling and NMR spectroscopy techniques. This report is the first application of phosphine MOFs in organocatalysis and explores the potential of a framework steric hindrance to impose selectivity on a catalytic reaction. These findings expand the opportunities for control and design of the active site in the pocket of heterogeneous catalysts.  相似文献   

6.
A cyclodextrin‐peptide hybrid (17NNβ) bearing two naphthalene units in the peptide side chain has been designed and synthesized as a novel chemosensor molecule. Circular dichroism study of the compound revealed that the peptide has α‐helix structure with a helix content of 41%. The peptide revealed both monomer and excimer emission and the intensity of the excimer emission increased while that of the monomer emission decreased upon addition of the guest compound. This behavior was observed for various guest molecules, suggesting that the system can be used for detecting molecules in aqueous solution.  相似文献   

7.
New spin labeling strategies have immense potential in studying protein structure and dynamics under physiological conditions with electron paramagnetic resonance (EPR) spectroscopy. Here, a new spin‐labeled chemical recognition unit for switchable and concomitantly high affinity binding to His‐tagged proteins was synthesized. In combination with an orthogonal site‐directed spin label, this novel spin probe, Proxyl‐trisNTA (P‐trisNTA) allows the extraction of structural constraints within proteins and macromolecular complexes by EPR. By using the multisubunit maltose import system of E. coli: 1) the topology of the substrate‐binding protein, 2) its substrate‐dependent conformational change, and 3) the formation of the membrane multiprotein complex can be extracted. Notably, the same distance information was retrieved both in vitro and in situ allowing for site‐specific spin labeling in cell lysates under in‐cell conditions. This approach will open new avenues towards in‐cell EPR.  相似文献   

8.
9.
10.
11.
12.
13.
We present the cobalt(III)‐mediated interaction between polyhistidine (His)‐tagged proteins and nitrilotriacetic acid (NTA)‐modified surfaces as a general approach for a permanent, oriented, and specific protein immobilization. In this approach, we first form the well‐established Co2+‐mediated interaction between NTA and His‐tagged proteins and subsequently oxidize the Co2+ center in the complex to Co3+. Unlike conventionally used Ni2+‐ or Co2+‐mediated immobilization, the resulting Co3+‐mediated immobilization is resistant toward strong ligands, such as imidazole and ethylenediaminetetraacetic acid (EDTA), and washing off over time because of the high thermodynamic and kinetic stability of the Co3+ complex. This immobilization method is compatible with a wide variety of surface coatings, including silane self‐assembled monolayers (SAMs) on glass, thiol SAMs on gold surfaces, and supported lipid bilayers. Furthermore, once the cobalt center has been oxidized, it becomes inert toward reducing agents, specific and unspecific interactions, so that it can be used to orthogonally functionalize surfaces with multiple proteins. Overall, the large number of available His‐tagged proteins and materials with NTA groups make the Co3+‐mediated interaction an attractive and widely applicable platform for protein immobilization.  相似文献   

14.
15.
16.
The Pd‐catalyzed reactions of 3‐chloro‐bodipy with R2PH (R=Ph, Cy) provide nonfluorescent bodipy–phosphines 3‐PR2–bodipy 3 a (R=Ph) and 3 b (R=Cy; quantum yield Φ<0.001). Metal complexes such as [AgCl( 3 b )] and [AuCl( 3 b )] were prepared and shown to display much higher fluorescence (Φ=0.073 and 0.096). In the gold complexes, the level of fluorescence was found to be qualitatively correlated with the electron density at gold. Consequently, the fluorescence brightness of [AuCl( 3 b )] increases when the chloro ligand is replaced by a weakly coordinating anion, whereas upon formation of the electron‐rich complex [Au(SR)( 3 b )] the fluorescence is almost quenched. Related reactions of [AuCl( 3 b )] with [Ag]ONf)] (Nf= nonaflate) and phenyl acetylenes enable the tracking of initial steps in gold‐catalyzed reactions by using fluorescence spectroscopy. Treatment of [AuCl( 3 b )] with [Ag(ONf)] gave the respective [Au(ONf)( 3 b )] only when employing more than 2.5 equivalents of silver salt. The reaction of the “cationic” gold complex with phenyl acetylenes leads to the formation of the respective dinuclear cationic [{( 3 b )Au}2(CCPh)]+ and an increase in the level of fluorescence. The rate of the reaction of [Au(ONf)( 3 b )] with PhCCH depends on the amount of silver salt in the reaction mixture; a large excess of silver salt accelerates this transformation. In situ fluorescence spectroscopy thus provides valuable information on the association of gold complexes with acetylenes.  相似文献   

17.
18.
A genetically modified His‐tagged endoglucanase, EGIIcore2, with two active sites in series was immobilized on gold via three different kinds of anchor molecules, and its hydrolytic activity was studied. Immobilization of EGIIcore2 was influenced by the chain length and hydrophilicity of anchor molecules. The hydrolytic activity of the immobilized EGIIcore2 was nearly the same on either anchor molecule. Interestingly, the immobilized EGIIcore2 apparently retained the inherent hydrolytic activity similarly to free EGIIcore2. It is therefore considered that the local high concentration of EGIIcore2 on the surface should promote the successive hydrolysis of the transient products to show the high hydrolytic activity despite of immobilization.

  相似文献   


19.
20.
The isolation of specific nucleic acid sequences is a major bottleneck in molecular diagnostics. Magnetic beads/particles are typically used as solid supports for the capture of DNA targets to improve sample throughput but aggregate over time resulting in lower capture efficiency and obstruction of liquid handling devices. Herein, we describe a particle‐free approach to sequence‐specific DNA extraction using a magnetic liquid support and ion‐tagged oligonucleotide (ITO) probes. ITO conjugates were synthesized with the highest yields ever achieved for the radical thiol‐ene coupling of a substrate and oligonucleotide. In addition to distinguishing nucleotide mismatches, the ITO and magnetic liquid‐based approach was more sensitive than a commercial magnetic bead‐based method for the capture of target DNA from a pool of interfering genomic DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号