首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 200 leading journals. To access a ChemInform Abstract of an article which was published elsewhere, please select a “Full Text” option. The original article is trackable via the “References” option.  相似文献   

3.
ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 200 leading journals. To access a ChemInform Abstract of an article which was published elsewhere, please select a “Full Text” option. The original article is trackable via the “References” option.  相似文献   

4.
5.
ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 100 leading journals. To access a ChemInform Abstract of an article which was published elsewhere, please select a “Full Text” option. The original article is trackable via the “References” option.  相似文献   

6.
7.
Three heterometallic supramolecular complexes [Cu2(pn)4(Mo(CN)8)·4H2O] (pn = diaminopropane) ( 1 ), [Cu2(pn)4(W(CN)8)·4H2O] ( 2 ) and [Cu2(1,2‐pn)4(H2O) (W(CN)8)·3H2O] ( 3 ) have been synthesized and structurally characterized by single‐crystal X‐ray diffraction studies. Complexes 1 – 3 exhibit three different networks. In 1 , the copper(II) ion is pentacoordinate with a distorted square‐pyramidal arrangement and the network is formed by the incorporation of coordinative linkage between the μ2 bridge of [Mo(CN)8]4– and copper(II) ions and hydrogen‐bonding interactions. In 2 , the copper(II) ion exhibits a distorted square‐pyramidal arrangement and the network is formed by the hydrogen bonded trinuclear complexesof [Cu2(pn)2(W(CN)8)]. In 3 , the copper(II) ions show twodifferent distorted octahedral arrangements. The network structure of 3 is formed by the hydrogen‐bonded complex chains of [Cu2(1,2‐pn)2(W(CN)8)].  相似文献   

8.
9.
10.
11.
ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 100 leading journals. To access a ChemInform Abstract of an article which was published elsewhere, please select a “Full Text” option. The original article is trackable via the “References” option.  相似文献   

12.
13.
14.
ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 200 leading journals. To access a ChemInform Abstract, please click on HTML or PDF.  相似文献   

15.
16.
17.
18.
19.
The new compounds [(acac)2Ru(μ‐boptz)Ru(acac)2] ( 1 ), [(bpy)2Ru(μ‐boptz)Ru(bpy)2](ClO4)2 ( 2 ‐(ClO4)2), and [(pap)2Ru(μ‐boptz)Ru(pap)2](ClO4)2 ( 3 ‐(ClO4)2) were obtained from 3,6‐bis(2‐hydroxyphenyl)‐1,2,4,5‐tetrazine (H2boptz), the crystal structure analysis of which is reported. Compound 1 contains two antiferromagnetically coupled (J=?36.7 cm?1) RuIII centers. We have investigated the role of both the donor and acceptor functions containing the boptz2? bridging ligand in combination with the electronically different ancillary ligands (donating acac?, moderately π‐accepting bpy, and strongly π‐accepting pap; acac=acetylacetonate, bpy=2,2′‐bipyridine pap=2‐phenylazopyridine) by using cyclic voltammetry, spectroelectrochemistry and electron paramagnetic resonance (EPR) spectroscopy for several in situ accessible redox states. We found that metal–ligand–metal oxidation state combinations remain invariant to ancillary ligand change in some instances; however, three isoelectronic paramagnetic cores Ru(μ‐boptz)Ru showed remarkable differences. The excellent tolerance of the bpy co ‐ ligand for both RuIII and RuII is demonstrated by the adoption of the mixed ‐ valent form in [L2Ru(μ‐boptz)RuL2]3+, L=bpy, whereas the corresponding system with pap stabilizes the RuII states to yield a phenoxyl radical ligand and the compound with L=acac? contains two RuIII centers connected by a tetrazine radical‐anion bridge.  相似文献   

20.
A structural and conformational analysis of 1‐oxaspiro[2.5]octane and 1‐oxa‐2‐azaspiro[2.5]octane derivatives was performed using 1H, 13 C, and 15 N NMR spectroscopy. The relative configuration and preferred conformations were determined by analyzing the homonuclear coupling constants and chemical shifts of the protons and carbon atoms in the aliphatic rings. These parameters directly reflected the steric and electronic effects of the substituent bonded to the aliphatic six‐membered ring or to C3 or N2. The parameters also were sensitive to the anisotropic positions of these atoms in the three‐atom ring. The preferred orientation of the exocyclic substituents directed the oxidative attack. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号