首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bis(trimethylsilyl) [3-(trimethylsilyl)propyl]phosphonate and trimethylsilyl [3-(trimethylsilyl)propyl]-phosphinate are obtained by the reaction of bis(trimethylsiloxy)phosphine with trimethylallylsilane and converted into [3-(trimethylsilyl)propyl]phosphinic and [3-(trimethylsilyl)propyl]phosphonic acid, respectively, by the reaction with methanol.  相似文献   

2.
A series of endohedral and exohedral amine-functionalized ligands were synthesized and used in the construction of supramolecular D(2h) rhomboids and a D(6h) hexagon. These supramolecular polygons were obtained via self-assembly of 120° dipyridyl donors with 180° or 120° diplatinum precursors when combined in 1:1 ratios. Steady-state absorption and emission spectra were collected for each ligand and metallacycle. Density functional theory (DFT) and time-dependent DFT calculations were employed to probe the nature of the observed optical transitions for the rhomboids. The emissive properties of these bis(phosphine) organoplatinum metallacycles arise from ligand-centered transitions involving π-type molecular orbitals with modest contributions from metal-based atomic orbitals. The D(2h) rhomboid self-assembled from 2,6-bis(4-pyridylethynyl)aniline and a 60° organoplatinum(II) acceptor has a low-energy excited state in the visible region and emits above 500 nm, properties which greatly differ from those of the parent 2,6-bis(4-pyridylethynyl)aniline ligand.  相似文献   

3.
Bis(2-phenylethyl)phosphine selenide was obtained with 86% yield from bis(2-phenylethyl)phosphine and selenium. XRD, IR, UV, and multinuclear NMR spectroscopic studies revealed that the phosphorus atom in the bis(2-phenylethyl)phosphine selenide molecule is four-coordinated irrespective of the phase state (crystals or solution).  相似文献   

4.
5.
6.
7.
Dual intermolecular hydrophosphination of conjugated diynes with 2 equiv of diphenylphosphine was catalyzed by ytterbium complexes, Yb(η2-Ph2CNPh)(hmpa)3 (1) and Yb[N(SiMe3)2]3(hmpa)2 (2), to give the corresponding 1,4-bis(diphenylphosphinyl)buta-1,3-dienes in high yields after oxidative work-up. Distribution of the four possible stereoisomers sharply depended on substituents of the substrates. (Z,Z)-Isomers were predominantly obtained from the disubstituted diynes, together with minor (Z,E)-isomers. On the other hand, the reaction of the terminal diynes provided major (E,Z) and minor (E,E)-butadienes. 1,4-Di-tert-butylbuta-1,3-diyne was exclusively converted to an allenic compound. Moreover, the dual hydrophosphination using phenyphosphine was also performed with 1 and 2. Thus, the reaction of 2 equiv of aromatic alkynes with PhPH2 and subsequent oxidation gave bis(alkenyl)phosphine oxides in preference of the (Z,Z)-stereoisomers.  相似文献   

8.
X-Ray study of the (3,5-diallylisocyanuratomethyl)bis(chloromethyl)phosphine oxide showed that the phosphorylmethyl group is bonded to the nitrogen atom of the cycle. Reaction of the tris(chloromethyl)phosphine sulfide with sodium diallylisocyanurate gave (3,5-diallylisocyanuratomethyl)bis(chloromethyl)phosphine sulfide, and treatment of the tris(3,5-diallylisocyanuratomethyl)phosphine oxide with phosphorus pentasulfide gave a tris(3,5-diallylisocyanuratomethyl)bis(chloromethyl)phosphine sulfide.Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 8, pp. 1446–1448, August, 1993.  相似文献   

9.
A 1,2-dithienylethene compound bearing bis(phosphine) groups (1o) represents a new class of photoresponsive ligands where there are steric and electronic differences between two photogenerated isomers. The coordination chemistry of this ligand class is demonstrated by preparing a gold(I) complex (2o) and a phosphine selenide (3o).  相似文献   

10.
Copper(I) complexes of bis(phosphine) monoxide ligands, bis(diphenylphosphino)ethane monoxide (dppeo) and bis(diphenylphosphino)methane monoxide (dppmo) have been prepared and characterized. One of the complexes with dppeo was characterized by X-ray crystal structure analysis confirming Cu(I) coordination to hard and soft donors. The stability of these complexes in solution was probed via spectroscopic and electrochemical studies. Copper(I) is more readily oxidized in the presence of the hard O donor ligands. In solution, they readily exchange the hard donor O, for soft ligands. Although copper(I) prefers soft ligands and is more stable towards oxidation in their presence, it coordinates to hard donors when there is electrostatic or an entropy driven advantage.  相似文献   

11.
The complex cis-Pt(Ph3Ge)2(PMe2Ph)2 underwent smooth isomerization to give the trans-isomer at room temperature via an associative five-coordinated intermediate. Thermodynamic parameters and activation energy for the cis to trans isomerization were obtained, ΔH# = 105 kJ mol−1, ΔS# = 12.5 J mol−1 K−1, and Ea = 107 kJ mol−1, respectively. Heating of trans-Pt(Ph3Ge)2(PMe2Ph)2 at 50 °C for 36 days produced trans-PtPh(Ph3Ge)(PMe2Ph)2 followed by the formation of trans-PtPh2(PMe2Ph)2, Pt(PMe2Ph)4, and Ph4Ge finally via elimination of the phenyl group from Ph3Ge ligand with liberation of the Ph2Ge unit and subsequent reductive elimination of the remaining Ph3Ge ligand at 80 °C for 1 month.  相似文献   

12.
Treatment of [LOEtTi(OTf)3] (, OTf = triflate) with S-binapO2 (binap = 2,2′-bis(diphenylphosphinoyl)-1,1′-binaphthyl) afforded the terminal hydroxo complex [LOEtTi(S-binapO2)(OH)][OTf]2 (1). Treatment of [LOEtTi(OTf)3] with K(tpip) (tpip = [N(Ph2PO)2]) afforded [LOEtTi(tpip)(OTf)][OTf] (2) that reacted with CsOH to give [LOEtTi(tpip)(OH)][OTf] (3). The structures of 1 and 2 have been determined.  相似文献   

13.
14.
15.
16.
[Structure: see text] Bis(phosphine)boronium salts 3a-c were designed and prepared as key building blocks for the synthesis of highly congested diphosphinobenzenes. The preparation of sterically hindered ortho-phenylene-bridged diphosphines 1a-c was achieved by the reaction of the bis(phosphine)boronium salts 3a-c with difluorobenzenechromium complex 2 and subsequent removal of the BH2 group. The steric nature of diphosphine 1a was revealed in single-crystal X-ray analysis of its Rh complex.  相似文献   

17.
Recently, we have developed novel Eu(III) complexes with three beta-diketonates and one asymmetric bis(phosphine) oxide whose light emission intensity is drastically increased. In this paper, one of these complexes is investigated by the density functional theory calculation. Sixteen isomers of this complex have been considered. The ratio of the existence for the most stable isomer (B1_1a) is found to be about 51%, and the sum of the ratio of the existence for the six most stable isomers (B1_1a, B1_3a, B1_8a, B1_2a, B1_1b, and B1_5a) is about 100%, assuming the Boltzmann distribution (T = 300 K). The coordination structures of the six most stable isomers in the ground states are similar, and we can expect asymmetric ligand fields for them, favorable for the efficient light emission. Vertical excitation energies and oscillator strengths for each isomer have been obtained by the time-dependent density functional theory. With the red-shift of the wavelength and the interpolation by Gaussian convolution, both the calculated absorption spectra for the most stable isomer B1_1a and the calculated absorption spectra for the ensemble average of the isomers are found to be similar to the experimental fluorescence excitation spectra. The efficiency of energy transfer from the triplet excited state to the Eu(III) ion is considered by calculating DeltaEET (difference between the adiabatic excitation energy of the complex for the lowest triplet state and the emission energy of the Eu(III) ion for 5D0 to 7F2). The characters for the lowest triplet states for the isomers are investigated by the spin density distributions of the triplet states.  相似文献   

18.
(NEt4)2[Re(CO)3Br3] or (NEt4)2[Tc(CO)3Cl3] react with bis(2-pyridyl)phenylphosphine (PPhpy2) or tris(2-pyridyl)phosphine (Ppy3) under formation of neutral tricarbonyl complexes of the composition [M(CO)3X(L)] (M = Re, X = Br; M = Tc, X = Cl; L = PPhpy2 or Ppy3). In all isolated products, the ligands coordinate solely via two of their nitrogen atoms. All attempts to force a tripodal coordination of the phosphinopyridines failed. Removal of the bromo ligands from (NEt4)2[Re(CO)3Br3] by the addition of AgNO3 in THF/water, and subsequent reaction of the resulting [Re(CO)3(THF)3](NO3)with Ppy3 yielded the complex [Re(CO)3(NO3)(Ppy3-N,N′)] with a monodentate coordinated nitrato ligand. The products have been characterized spectroscopically and by X-ray structure analyses.  相似文献   

19.
20.
Treatment of Ni(NCS)2(PMe2Ph)2 with organic isocyanides CN-R gave five-coordinate isocyanide Ni(II) complexes, Ni(CN-R)(NCS)2(PMe2Ph)2 (R = C6H3-2,6-Me2 (1), t-Bu (2)). Interestingly, the corresponding reaction of Ni(NCS)2(P(n-Pr)3)2 with 2 equiv. of CN-t-Bu gave an unusual compound, which exists as an ion pair of the trigonal bipyramidal cation [Ni(P(n-Pr)3)2(CN-t-Bu)3]2+ (3) and the dinuclear NCS-bridged anion [Ni(1,3-micro-NCS)(NCS)3]2(2-) (4). In contrast, Pd(NCS)2(P(n-Pr)3)2 underwent substitution with 2 equiv. of CN-t-Bu to give the four-coordinate mono(isocyanide) Pd(II) complex Pd(NCS)(SCN)(CN-t-Bu)(P(n-Pr)3) (5) via phosphine dissociation. Reactions of M(NCS)2L2 (M = Pd, Pt; L = PMe3, PEt3, PMePh2, P(n-Pr)3) with two equiv. of CN-R (R = t-Bu, i-Pr, C6H3-2,6-Me2) gave the corresponding bis(isocyanide) complexes [M(CN-R)2(PR3)2](SCN)2 (7-13), except for Pd(NCS)2(PEt3)2 that reacted with CN-R' (R' = i-Pr, C6H3-2,6-Me2) and produced the mono(isocyanide) Pd(II) complexes [Pd(CN-R')(SCN)(PEt3)2](SCN) (14 and 15). Finally, treatment of M(NCS)2(PMe3)2 (M = Ni, Pd, Pt) with sterically bulky isocyanide CN-C6H3-2,6-i-Pr2 gave various products, (16-18) depending on the identity of the metal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号