A series of twelve new 2‐[(o‐ and p‐substituted)aminophenyl]‐3H‐5‐[(o‐ and p‐substituted)phenyl]‐7‐chloro‐1,4‐benzodiazepines, which have possible pharmacological properties has been obtained. The synthesis was carried out following six steps. The structure of all products was corroborated by ir, 1H nmr, 13C nmr and ms. In addition for the compound 2‐(o‐chloroaminophenyl)‐3H‐5‐(o‐fluorophenyl)‐7‐chloro‐1,4‐benzodiazepine 7, its structure was confirmed by X‐ray diffraction. 相似文献
Kinetic measurements for the thermal rearrangement of 2,2‐diphenyl‐1‐[(E)‐styryl]cyclopropane ( 22a ) to 3,4,4‐triphenylcyclopent‐1‐ene ( 23a ) in decalin furnished ΔH =31.0±1.2 kcal mol?1 and ΔS =?6.0±2.6 e.u. The lowering of ΔH≠ by 20 kcal mol?1, compared with the rearrangement of the vinylcyclopropane parent, is ascribed to the stabilization of a transition structure (TS) with allylic diradical character. The racemization of (+)‐(S)‐ 22a proceeds with ΔH =28.2±0.8 kcal mol?1 and ΔS =?5±2 e.u., and is at 150° 106 times faster than the rearrangement. Seven further 1‐(2‐arylethenyl)‐2,2‐diphenylcyclopropanes 22 , (E)‐ and (Z)‐isomers, were synthesized and characterized. The (E)‐compounds showed only modest substituent influence in their krac (at 119.4°) and kisom (at 159.3°) values. The lack of solvent dependence of rate opposes charge separation in the TS, but a linear relation of log krac with log p.r.f., i.e., partial rate factors of radical phenylations of ArH, agrees with a diradical TS. The ring‐opening of the preponderant s‐trans‐conformation of 22 gives rise to the 1‐exo‐phenylallyl radical 26 that bears the diphenylethyl radical in 3‐exo‐position, and is responsible for racemization. The 1‐exo‐3‐endo‐substituted allylic diradical 27 arises from the minor s‐gauche‐conformation of 22 and is capable of closing the three‐ or the five‐membered ring, 22 or 23 , respectively. The discussion centers on the question whether the allylic diradical is an intermediate or merely a TS. Quantum‐chemical calculations by Houk et al. (1997) for the parent vinylcyclopropane reveal the lack of an intermediate. Can the conjugation of the allylic diradical with three Ph groups carve the well of an intermediate? 相似文献
A novel method for the asymmetric synthesis of 3,3‐difluoro‐2‐propanoylbicyclo‐[3.3.0]octanes involves an unprecedented intramolecular radical cyclization/ipso‐1,4‐aryl migration cascade. 相似文献
The preparation and spectral properties often novel methyl 5‐[(o‐, m‐, and p‐substituted)‐phenylthio]‐2‐benzimidazolecarbamates with possible pharmacological activity as antihelmintics is described; by condensation and cyclization between 5‐methylthioures sulfate chloroformic acid methyl ester and 3,4‐diaminophenyl‐substituted‐phenylthio ether dissolved in ethanol. The structures of all final products were corroborated by ir; 1H‐nmr, 13C‐nmr and ms. 相似文献
Tackling blocks : The isoprene‐assisted radical coupling (I‐ARC) of polymers prepared by cobalt‐mediated radical polymerization (see picture) is the first efficient radical coupling method that is not restricted to short chains. When applied to AB diblock copolymers, I‐ARC constitutes a straightforward approach to the preparation of novel symmetrical ABA triblock copolymers.
The preparation of twelve novel 2,3,4,5,10,11‐hexahydro‐1H‐dibenzo[b,e] [1,4]diazepin‐l‐ones which have potentially useful pharmacological properties; by condensation and cyclization between 3‐{[4‐(o‐; m‐; p‐methoxy)phenylthio]‐1,2‐phenylenediamine}‐5,5‐dimethyl‐2‐cyclohexenone with (o‐; and p‐substi‐tuted)benzaldehyde. The structure of all final products were corroborated by ir, 1H‐nmr, 13C‐nmr and ms. 相似文献
As an extension of recent findings on the recovery of palladium with dithioether extractants, single crystals of the chelating vicinal thioether sulfoxide ligand rac‐1‐[(2‐methoxyethyl)sulfanyl]‐2‐[(2‐methoxyethyl)sulfinyl]benzene, C12H18O3S2, (I), and its square‐planar dichloridopalladium complex, rac‐dichlorido{1‐[(2‐methoxyethyl)sulfanyl]‐2‐[(2‐methoxyethyl)sulfinyl]benzene‐κ2S,S′}palladium(II), [PdCl2(C12H18O3S2)], (II), have been synthesized and their structures analysed. The molecular structure of (II) is the first ever characterized involving a dihalogenide–PdII complex in which the palladium is bonded to both a thioether and a sulfoxide functional group. The structural and stereochemical characteristics of the ligand are compared with those of the analogous dithioether compound [Traeger et al. (2012). Eur. J. Inorg. Chem. pp. 2341–2352]. The sulfinyl O atom suppresses the electron‐pushing and mesomeric effect of the S—C...;C—S unit in ligand (I), resulting in bond lengths significantly different than in the dithioether reference compound. In contrast, in complex (II), those bond lengths are nearly the same as in the analogous dithioether complex. As observed previously, there is an interaction between the central PdII atom and the O atom that is situated above the plane. 相似文献
The crystal structures of the title 4‐chlorophenyl, (I), and 2‐chlorophenyl, (II), compounds, both C14H12ClNO2, have been determined using X‐ray diffraction techniques and the molecular structures have also been optimized at the B3LYP/6‐31 G(d,p) level using density functional theory (DFT). The X‐ray study shows that the title compounds both have strong intramolecular O—H...N hydrogen bonds and that the crystal networks are primarily determined by weak C—H...π and van der Waals interactions. The strong intramolecular O—H...N hydrogen bond is evidence of the preference for the phenol–imine tautomeric form in the solid state. The IR spectra of the compounds were recorded experimentally and also calculated for comparison. The results from both the experiment and theoretical calculations are compared in this study. 相似文献
A copper‐catalyzed difunctionalizing trifluoromethylation of activated alkynes with the cheap reagent sodium trifluoromethanesulfinate (NaSO2CF3 or Langlois’ reagent) has been developed incorporating a tandem cyclization/dearomatization process. This strategy affords a straightforward route to synthesis of 3‐(trifluoromethyl)‐spiro[4.5]trienones, and presents an example of difunctionalization of alkynes for simultaneous formation of two carbon–carbon single bonds and one carbon–oxygen double bond. 相似文献
The stereo‐ and regioselectivity of triplet‐sensitised radical reactions of furanone derivatives have been investigated. Furanones 7 a , b were excited to the 3ππ* state by triplet energy transfer from acetone. Intramolecular hydrogen abstraction then occurred such that hydrogen was transferred from the tetrahydropyran to the β position of the furanone moiety. Radical combination of the tetrahydropyranyl and the oxoallyl radicals led to the final products 8 a , b . In the intramolecular reaction, overall, a pyranyl group adds to the α position of the furanone. The effect of conformation was first investigated with compounds 9 a , b carrying an additional substituent on the tether between the furanone and pyranyl moiety. Further information on the effect of conformation and the relative configuration at the pyranyl anomeric centre and the furanone moiety was obtained from the transformations of the glucose derivatives 12 , 14 , 17 and 18 . Radical abstraction occurred at the anomeric centre and at the 5′‐position of the glucosyl moiety. Computational studies of the hydrogen‐abstraction step were carried out with model structures. The activation barriers of this step for different stereoisomers and the abstraction at the anomeric centre and at the 6‘‐position of the tetrahydropyranyl moiety were calculated. The results of this investigation are in accordance with experimental observations. Furthermore, they reveal that the reactivity and regioselectivity are mainly determined in the hydrogen‐abstraction step. Intramolecular hydrogen abstraction (almost simultaneous electron and proton transfer) in 3ππ* excited furanones only takes place under restricted structural conditions in a limited number of conformations that are defined by the relative configuration of the substrates. It is observed that in the biradical intermediate, back‐hydrogen transfer occurs leading to the starting compound. In the case of glucose derivatives, this reaction led to epimerisation at the anomeric centre. 相似文献