首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Knoevenagel condensation of 5,6‐dihydro‐4H‐pyrrolo[3,2,1‐ij]quinoline‐1,2‐dione 3 with aryl cyanomethyl ketones 9 generates 3‐(aroyl(cyano)methylidene)oxindoles 10 that react with cyclic 1,3‐diketones 11 to generate polycyclic hemiacetal spiro[4H‐2,3‐dihydropyran‐3,3′‐oxindoles] 13 .  相似文献   

2.
Novel sulfur-containing spiro compounds such as 7,11-diaryl-9-thia-2,4-diazaspiro [5,5] undecane-1,3,5-trione 9,9-dioxides ( 2 ), 6,10-diaryl-8-thia-2,3-diazas-piro[4,5]decane-1,4-dione-8,8-dioxides ( 3 ) and 6,10-diaryl-2-oxo-8-thia-3-azaspiro [4,5] decane-1,4-dione-8,8-dioxides ( 5 ) have been prepared by the condensation of 4-dimethoxycarbonyl/diethoxycarbonyl-3,5-diaryl-1-thiane 1,1-dioxides ( 1 ) with urea, hydrazine hydrate, and hydroxylamine hydrochloride, respectively. The N-substituted derivatives ( 4 and 6 ) of 3 and 5 have also been prepared by acylation and nitrosation. The structures of 2, 3 , and 5 were established by IR, 1H NMR, and 13C NMR spectral studies, respectively.  相似文献   

3.
Novel heterocycles [1,2,5]selenadiazolo[3,4‐e][1,4]diazepines 3a‐c , [1,2,5]thiadiazolo[3,4‐e]‐[1,4]diazepines 7a‐c , [1,2,5]selenadiazolo[3,4‐e][1,4]oxaepines 4a,b , [1,2,5]thiadiazolo[3,4‐e]‐[1,4]oxazepines 9a‐c and [1,2,5]selena(or thia)diazolo[3,4‐c][1,2,6]thiadiazines 10a,b were synthesized starting form 4,6‐dimethyl[1,2,5]se]enadiazolo[3,4‐d]pyrimidine‐5,7(4H,6H)‐dione 1 or 4,6‐dimethyl‐[1,2,5]thiadiazolo[3,4‐d]pyrimidine‐5,7(4H,6H)‐dione 5 .  相似文献   

4.
The reaction of compound 2‐amino‐3‐cyano‐6‐methylquinoxaline‐1,4‐dioxide with cyclohexanone and dimedone in dimethylformamide in the presence of anhydrous ZnCl2 under Friedländer‐type cyclocondensation gave compounds 12‐amino‐9‐methyl‐1,2,3,4,12,12a‐hexahydroquinolino[2,3‐b]quinoxaline‐6,11‐dioxide ( 4 ), 7‐methyl‐4‐oxo‐3,4‐dihydro‐1H‐spiro[benzo[g]pteridine‐2,1′‐cyclohexane]5,10‐dioxide ( 5 ), and 12‐amino‐3,3,9‐trimethyl‐1‐oxo‐1,2,3,4,12,12a‐hexahydroquinolino[2,3‐b]quinoxaline‐6,11‐dioxide ( 6 ); (R)‐3′,3′,7‐trimethyl‐4,5′‐dioxo‐3,4‐dihydro‐1H‐spiro[benzo[g]pteridine‐2,1′‐cyclohexane]5,10‐dioxide ( 7 ) were achieved and evaluated their biological activity as antibacterial and antifungal activities and antitumor evaluation, and also, the density functional theory calculations were evaluated.  相似文献   

5.
3‐Methyl‐1‐sulfonic acid imidazolium hydrogen sulfate ([MSIm][HSO4]) catalyzed the condensation of 5‐aminobenzotriazole and 5,5‐dimethyl‐cyclohexane‐1,3‐dione (dimedone) with aromatic aldehydes under microwave irradiation. This method is efficient to synthesize 11‐aryl‐8,8‐dimethyl‐6,7,9,11‐tetrahydro[1,2,3]triazolo[4,5‐a ]acridine‐10(1H )‐one derivatives as a series of tetrahydroacridines in good to excellent yields, while the catalyst can be recovered and reused up to six times without significant loss of activity. This one‐pot three‐component reaction provided an efficient method for the synthesis of aromatic heterocycles.  相似文献   

6.
N-(2-Dimethylaminopropyl)-8,8-dimethyl-2-azaspiro[4.5]decane ( 1 ), N-(2-dimethylaminopropyl)-8,8-diethyl-2-azaspiro[4.5]decane ( 2 ), N-(3-dimethylaminopropyl)-9,9-dimethyl-3-azaspiro[5.5]undecane ( 3 ), and N-(3-dimethylaminopropyl)-9,9-diethyl-3-azaspiro[5.5]undecane ( 4 ) have been synthesized from 4,4-dimethylcyclohexanone ( 5 ) and 4,4-diethylcyclohexanone ( 6 ). Biological evaluation of these amines showed significant inhibition of cancer cell growth in human cancer cells grown in tissue culture.  相似文献   

7.
The conformation of [bis‐(N,N′‐difluoroboryl)]‐3,3′‐diethyl‐4,4′,8,8′,9,9′,10,10′‐octamethyl‐2,2′‐bidipyrrin (1) in solution was studied by analyzing the 13C? 19F and 19F? 19F through‐space spin–spin couplings. The 1H and 13C NMR spectra were assigned on the basis of nuclear Overhauser effect spectroscopy (NOESY), heteronuclear single‐quantum correlation (HSQC), and heteronuclear multiple‐bond correlation (HMBC) experiments. The 19F spectrum of 1 was compared with that of 2‐ethyl‐1,3,5,6,7‐pentamethyl‐4,4‐difluoro‐4‐bor‐3a,4a‐diaza‐s‐indacen (2). The 19F? 19F through‐space spin? spin coupling in 1 was thus assigned and the coupling constant was obtained by simulating the coupling patterns. The obtained conformation of 1 was compared with those of the known complexes [bis‐(N,N′‐difluoroboryl)]‐3,3′,8,8′,9,9′‐hexaethyl‐4,4′,10,10′‐tetramethyl‐6,6′‐(4‐methylphenyl)‐2,2′‐bidipyrrin (3)and [bis‐(N,N′‐difluoroboryl)]‐9,9′‐diethyl‐4,4′,8,8′,10,10′‐hexamethyl‐3,3′‐bis(methoxycarbonylethyl)‐2,2′‐bidipyrrin (4). The conformational dynamics of 1, 3, and 4 was surveyed by observing the temperature dependence of the through‐space coupling constants between 253 and 333 K. The 13C? 19F and 19F? 19F through‐space spin–spin couplings thus confirm similar conformations of different BisBODIPYs in solution in contrast to earlier findings in the solid state. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
The reaction of 3‐amino‐4,6‐dimethylthieno[2,3‐b]pyridine‐2‐carboxamide (1a) or its N‐aryl derivatives 1b‐d with carbon disulphide gave the pyridothienopyrimidines 2a‐d , whilst when the same reaction was carried out using N1‐arylidene‐3‐amino‐4,6‐dimethylthieno[2,3‐b]pyridine‐2‐carbohydrazides (1e‐h) , pyridothienothiazine 3 was obtained. Also, refluxing of 1b‐d with acetic anhydride afforded oxazinone derivative 4 . Compounds 2a and 2b‐d were also obtained by the treatment of thiazine 3 with ammonium acetate or aromatic amines, respectively. When compound 2a was allowed to react with arylidene malononitriles or ethyl α‐cyanocinnamate, novel pyrido[3″,2″:4′,5′]thieno[3′,2′:4,5]pyrimido[2,1‐b][1,3] thiazines 5a‐c were obtained. Treatment of 2b‐d with bromine in acetic acid furnished the disulphide derivatives 6a‐c . U.V. irradiation of 2b‐d resulted in the formation of pyrido[3″,2″:4′,5′]thieno[3′,2′:4,5]pyrimido[2,1‐b]benzthiazoles 7a‐c . The reaction of 2a‐d with some halocarbonyl compounds afforded the corresponding S‐substituted thiopyrido thienopyrimidines 8a‐j . Compound 8b was readily cyclized into the corresponding thiazolo[3″,2″‐a]‐pyrido[3′,2′:4,5]thieno[3,2‐d]pyrimidine 9 upon treatment with conc. sulphuric acid. Heating of 2a,b with hydrazine hydrate in pyridine afforded the hydrazino derivatives 11a,b . Reaction of ester 8c with hydrazine hydrate in ethanol gave acethydrazide 10 . Compounds 10 and 11a,b were used as versatile synthons for other new pyridothienopyrimidines 12–15 as well as [1,2,4] triazolopyridothienopyrimidines 16–19.  相似文献   

9.
Two efficient and diastereoselective procedures for the synthesis of (Z)‐6‐(2‐oxo‐1,2‐dihydro‐3H‐indol‐3‐ylidene)‐3,3a,9,9a‐tetrahydroimidazo[4,5‐e]thiazolo[3,2‐b]‐1,2,4‐triazin‐2,7(1H,6H)‐diones by aldol‐crotonic condensation of 1,3‐dimethyl‐3a,9a‐diphenyl‐3,3a,9,9a‐tetrahydroimidazo[4,5‐e]thiazolo[3,2‐b]‐1,2,4‐triazin‐2,7(1H,6H)‐dione with isatins under acidic or basic catalysis are reported. Isomerization in (Z)‐7‐(1‐allyl‐2‐oxo‐1,2‐dihydro‐3H‐indol‐3‐ylidene)‐1,3‐dimethyl‐3a,9a‐diphenyl‐1,3a,4,9a‐tetrahydroimidazo[4,5‐e]thiazolo[2,3‐c]‐1,2,4‐triazin‐2,8(3H,7H)‐dione was observed under basic conditions.  相似文献   

10.
Crystals of the title compound, C9H12O, were formed as an unexpected by‐product during the recrystallization of (2R,3R)‐α,α,α′,α′‐tetramesityl‐1,4‐dioxa­spiro­[4,5]­decane‐2,3‐di­methanol from hexane/ethyl acetate (7:3). Strong hydrogen bonds between hydroxide groups connect the mol­ecules around one set of four symmetry‐equivalent 21 axes.  相似文献   

11.
Treatment of 2‐aryl‐3,6‐bis(arylamino)‐1,4‐benzoquinones 2a‐h with different acid chlorides, namely acetyl, phenylacetyl and chloroacetyl chloride yields 3a,7a‐dihydropyrrolo[2,3‐f]indole‐2,6‐dione 3, 5‐(N‐phenylacetylarylamino)‐3‐phenylindole‐2,6‐dione 4 and 3‐chloro‐5‐(N‐chloroacetylarylamino)indole‐2,6‐dione 5 respectively. Stirring 2‐aryl‐1,4‐benzoquinones ( 1 ) with ethylenediamine and/or o‐phenyl‐enediamine in methylene chloride gives pyrazino[2,3‐g]quinoxalines derivative 6 and/or tetrapentacene derivative 7 respectively. The products 5‐aryl‐ and 6‐aryl‐1/H‐indazole‐4,7‐diones 8 and 9 were obtained in the 1,3‐dipolar cycloaddition of diazomethane to ( 1 ).  相似文献   

12.
The novel 6‐ethyl‐4‐hydroxy‐2,5‐dioxo‐5,6‐dihydro‐2H‐pyrano[3,2‐c]quinoline‐3‐carboxaldehyde ( 2 ) was efficiently synthesized from Vilsmeier–Haack formylation of 3‐(1‐ethy1‐4‐hydroxy‐2‐oxo‐(1H)‐quinolin‐3‐yl)‐3‐oxopropanoic acid ( 1 ). The aldehyde 2 was allowed to react with some nitrogen nucleophiles producing a variety of hydrazones 3 – 7 . Reaction of aldehyde 2 with hydrazine hydrate and hydroxylamine hydrochloride afforded pyrazole and isoxazole annulated pyrano[3,2‐c]quinoline‐2,5(6H)‐dione, respectively. The reactivity of aldehyde 2 was examined toward some active methylene nitrile, namely, malononitrile, ethyl cyanoacetate, and cyanoacetamide leading to 2‐iminopyrano[2′,3′:4,5]pyrano[3,2‐c]quinolines 10 – 12 , respectively. Also, some novel pyrazolo[4″,3″:5′,6′]pyrano[2′,3′:4,5]pyrano[3,2‐c]quinolines ( 13 , 14 ) and thiazolo[5″,4″:5′,6′]pyrano[2′,3′:4,5]pyrano[3,2‐c]quinolines ( 15 , 16 ) were synthesized. Structures of the new synthesized products were deduced on the basis of their analytical and spectral data.  相似文献   

13.
《化学:亚洲杂志》2017,12(6):638-642
Developing new organic conjugated materials for high density memory devices is highly desirable. In this research, a novel donor–acceptor‐type twelve‐ring fused twistheteroacene, 2,7,19,24‐tetra‐tert ‐butyl‐13,30‐didodecyl‐9,17,26,34‐tetraphenyl benzo[8′,9′]triphenyleno[2′,3′:7,8]dibenzo[b,e][1,4]dioxino[1,2,3,4‐lmn]dibenzo[6′,7′:10′,11′]tetraceno[2′,3′:5,6][1,4]dioxino[2,3‐f][3,8]phenanthroline‐12,14,29,31(13H ,30H )‐tetraone ( DPyN ) has been synthesized and characterized. It displays high thermal stability, possesses a broad absorption band centered at 510 and 538 nm, and emits red fluorescence in organic solvents. A solution‐processed memory device with DPyN as an active element shows an excellent memory performance with an ON/OFF current ratio of 103.46:1 and a threshold voltage of −2.44 V.  相似文献   

14.
Two novel alternating copolymers, poly{9,9‐dihexylfluorene‐2,7‐diyl‐alt‐2,5‐dioctyl‐3,6‐bis(4‐phenyl)pyrrolo[3,4‐c] pyrrole‐1,4‐dione} ( P1 ) and poly{9,9‐dihexylfluorene‐2,7‐diyl‐alt‐2,5‐dioctyl‐3,6‐bis(3‐phenyl)pyrrolo[3,4‐c] pyrrole‐1,4‐dione} ( P2 ), derived from 9,9‐dihexylfluorene and diketopyrrolopyrrole (DPP), have been successfully synthesized through palladium‐catalyzed Suzuki polycondensation in good yields. P1 and P2 possess moderate molecular weights and polydispersities, well‐defined structures, and excellent thermal properties with an onset decomposition temperature around 400 °C. Both P1 and P2 in thin films exhibit red photoluminescence from DPP species exclusively, with peaks at 609 and 616 nm, respectively. Cyclic voltammetry studies show that P1 and P2 have low‐lying lowest unoccupied molecular orbital energy levels at ?3.65 eV and reversible reduction processes, so these polymers may constitute another kind of red‐emitting polymer with high electron affinity. Preliminary electroluminescent results of devices with an indium tin oxide/poly(3,4‐ethylenedioxythiophene)/polymer/Ba/Al configuration reveal that P1 may be a promising candidate for red emitters with a maximum brightness of 153 cd/m2 and a maximum external quantum efficiency of 0.13%, whereas the performance of P2 is relatively poor. These differences might originate from different conjugation lengths in their main chain. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2395–2405, 2006  相似文献   

15.
3‐Amino‐4‐aryl‐5‐ethoxycarbonyl‐6‐methylthieno[2,3‐b]pyridine‐2‐carboxamides 3a‐c were prepared from ethyl 4‐aryl‐3‐cyano‐6‐methyl‐2‐thioxo‐1,2‐dihydropyridine‐5‐carbonylates 1a‐c and reacted with some carbonyl compounds to give tetrahydropyridothienopyrimidine derivatives 6a‐c, 7a‐c and 8a‐c , respectively. Treatment of compound 3c with chloroacetyl chloride led to the formation of a next key compound, ethyl 2‐chloromethyl‐4‐oxo‐3,4‐dihydropyrido[3′,2′:4,5]thieno[3,2‐d]pyrimidine‐8‐carboxylate 9 . Also, 3‐amino‐2‐benzimidazolylthieno[2,3‐b]pyridine‐5‐carboxylate 5 and 2‐(3′‐aminothieno [2,3‐b]pyridin‐2′‐yl)‐4‐oxo‐3,4‐dihydropyrido[3′,2′:4,5]thieno[3,2‐d]pyrimidine‐8‐carboxylate 17 were prepared from 1c. The compounds 5, 9 and 17 were used as good synthons for other pyridothienopyrimidines and pyridothienopyrimidobenzimidazoles as well as for related fused polyheterocyclic systems.  相似文献   

16.
N-(2-Dimethylaminopropyl)-8,8-dimethyl-8-sila-2-azaspiro[4.5]decane ( 1 ) and N-(3-dimethyl-aminopropyl)-9,9-dimethyl-9-sila-3-azaspiro[5.5]undecane ( 2 ) have been synthesized from 4,4-dimethyl-4-silacyclohexanone ( 5 ). Biological evaluation of 1 and 2 indicated cytotoxic action against human cancer cells grown in tissue culture.  相似文献   

17.
A new, fast, and easy one‐pot cyclopropanation reaction of aromatic and aliphatic aldehydes with 1H‐indene‐1,3(2H)‐dione and cyanogen bromide (BrCN) was developed for synthesizing 3′‐(aryl[alkyl])‐dispiro[indan‐2,1′‐cyclopropane‐2′,2′′‐indan]‐1,1′′,3,3′′‐tetrone in excellent yields in a short time (about 15 s) under basic media. All structures were characterized using IR, 1H NMR, and 13C NMR spectroscopy techniques.  相似文献   

18.
3-Aroyl-1H-pyrrolo[2,1-c][1,4]benzoxazine-1,2,4-triones reacted with N,N′-dihydroxycyclohexane-1,2-diamine to give 3-aroyl-1′,4,4′-trihydroxy-1-(2-hydroxyphenyl)-4a′,5′,6′,7′,8′,8a′-hexahydro-1′H-spiro[pyrrole-2,2′-quinoxaline]-3′,5(1H,4′H)-diones which underwent rearrangement into 1′-aroyloxy-4,4′-dihydroxy-1-(2-hydroxyphenyl)-4a′,5′,6′,7′,8′,8a′-hexahydro-1′H-spiro[pyrrolidine-2,2′-quinoxaline]3′,4,5(4′H)-triones via [1,4]-migration of the aroyl group. The product structure was proved by X-ray analysis.  相似文献   

19.
The reaction of 3,4‐di‐tert‐butyl‐thio‐phene 1‐oxide ( 8 ) with tetrachlorocyclopropene provided 6,7‐di‐tert‐butyl‐2,3,4,4‐tetrachloro‐8‐thia‐bicylo[3.2.1]octa‐2,6‐diene 8‐oxide ( 10 ), which was oxidized to the corresponding 8,8‐dioxide 16 by m‐chloroperbenzoic acid. The thermolysis of 16 in refluxing chlorobenzene, xylene, or octane gave 5‐tert‐ butyl‐1,2‐dichloro‐3‐[(1,1‐dich‐loro‐2,2‐dimethyl)‐pro‐ pyl]‐benzene ( 18 ) with extrusion of SO2 and 2‐tert‐butyl‐4,5,6‐trichloro‐9,9‐dimethylbicyclo[5.2.0]nona‐1,3,5‐triene ( 19 ) with extrusion of SO2 and HCl in 73–78% combined yields. On the other hand, the thermolysis of 16 in the presence of triethylamine gave 19 as the sole product in 98% yield. A mechanism that involves the initial formation of 4,5‐di‐tert‐butyl‐1,2,7,7‐tetrachlorocycloheptatriene ( 17 ) is proposed to ex‐ plain the observed products. © 2005 Wiley Periodicals, Inc. Heteroatom Chem 16:132–222, 2005; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20079  相似文献   

20.
A facile and environmentally benign procedure for the synthesis of 3‐aryl‐1H‐spiro[indoline‐3′,2‐quin‐azoline]2′,4(3H)‐dione from isatoic anhydride, aromatic amines and isatin derivatives in Brønsted acidic ionic liquid, 1‐methylimidazolium hydrogen sulfate, was reported. The ability to reuse the ionic liquid, the high yield, short reaction time and ease of purification are the important features of this process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号