首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Halomercurates: Syntheses and Crystal Structures of [Cu(en)2][Hg2Cl6], [Cu(en)2][Hg2Br6], and [Cu(en)2][HgBr4] Crystals of [Cu(en)2][Hg2Cl6] ( 1 ) have been obtained by layering a solution of Hg(NO3)2 and NaCl with a solution of [Cu(en)2]SO4. An analogous procedure, using NaBr instead of NaCl, gave crystals of [Cu(en)2][HgBr4] ( 3 ). Crystals of [Cu(en)2][Hg2Br6] ( 2 ) were obtained by gel crystallization using the same starting materials as for 3 . The complexes show very low solubility. The dinuclear anions of 1 consist of two nearly planar HgCl3 units related by a center of symmetry. In 2 infinite anionic chains are present, made up of parallel HgBr3 units. These units are packed in such a way as to produce a trigonal bipyramidal configuration around the Hg atoms. 3 contains mononuclear deformed tetrahedral [HgBr4]2– anions. In all three complexes the packing of the ions is such that halogen atoms of halomercurate anions complete a tetragonal bipyramidal coordination at Cu. The resulting Cu–Halogen distances are 2.924 Å for 1 , 3.036 Å for 2 and 3.085 and 3.119 Å for 3 . 1 : Space group P 1, Z = 1, lattice constants at 20 °C: a = 7.000(2), b = 7.526(2), c = 8.239(2) Å; α = 88.39(2), β = 86.06(2), γ = 86.10(3)°; R1 = 0.040. 2 : Space group P21/c, Z = 2, lattice constants at –50 °C: a = 7.185(1), b = 16.338(2), c = 7.814(1) Å; β = 94.88(2)°; R1 = 0.033. 3 : Space group P21/n, Z = 4, lattice constants at 20 °C: a = 8.055(3), b = 13.101(3), c = 13.814(3) Å; β = 91.24(3)°; R1 = 0.092.  相似文献   

2.
New Amido and Imido Bridged Complexes of Copper – Syntheses and Structures of [{Li(OEt2)}2][Cu(NPh2)3], [ClCuN(SnMe3)3], [{CuN(SnMe3)2}4], [Cu16(NH2tBu)12Cl16], [{CuNHtBu}8], [Li(dme)3][Cu6(NHMes)3(NMes)2], [PPh3(C6H4)CuNHMes], [{[Li(dme)][Cu(NHMes)(NHPh)]}2], and [{Li(dme)3}3][Li(dme)2][Cu12(NPh)8] The reactions of stannylated and lithiated amines with coppersalts (halogenides, thiocyanates) lead to amido and imido bridged complexes which contain one to twelve metal atoms. [{Li(OEt2)}2][Cu(NPh2)3] ( 1 ) results from the reaction of CuCl with LiNPh2 in the presence of trimethylphosphine. With N(SnMe3)3, CuCl reacts to the donor‐acceptor complex [ClCuN(SnMe3)3] ( 2 ) that is transformed into the tetrameric complex [{CuN(SnMe3)2}4] ( 3 ) by thermolysis. 3 can also be obtained by the reaction of LiN(SnMe3)2 with Cu(SCN)2. While terminally bound in 1 , the amido ligand is μ2‐bridging between copper atoms in compound 3 . The influence of the alkyl amide's leaving group can be seen from a comparison of the reactivity of Me3SnNHtBu and LiNHtBu, respectively. With Me3SnNHtBu, CuCl2 forms the polymeric compound [Cu16(NH2tBu)12Cl16] ( 4 ) whereas in the case of LiNHtBu with both CuCl and CuSCN, the complex [{CuNHtBu}8] ( 5 ) is obtained. The latter contains two planar Cu4N4‐rings similar to those in 3 . If a mesityl group is introduced at the lithium amide, different products are accessible. Both, CuBr and CuSCN, lead to the formation of [Li(dme)3][Cu6(NHMes)3(NMes)2] ( 6 ) whose anion consists of a prismatic copper core with μ2‐bridging amido and μ3‐bridging imido ligands. In the presence of PPh4Cl, a mixture of Cu(SCN)2 and LiNHMes enables an ortho‐metallation reaction that produces [PPh3(C6H4)CuNHMes] ( 7 ). From the reaction of CuSCN with LiNHMes and LiNHPh either the dimeric complex [{[Li(dme)][Cu(NHMes)(NHPh)]}2] ( 8 ) or the cluster [{Li(dme)3}3][Li(dme)2][Cu12(NPh)8] ( 9 ) results. The anion in 9 exhibits a cubo‐octahedron of copper atoms μ3‐bridged by (NPh)2–‐ligands. The solid state structures of compounds 1 – 9 have been determined by single crystal X‐ray diffraction.  相似文献   

3.
The solubility of hydrogen sulphide in three ionic liquids, viz. 1-hexyl-3-methylilmidazolium hexafluorophosphate ([hmim][PF6]), 1-hexyl-3-methylimidazolium tetrafluoroborate ([hmim][BF4]), and 1-hexyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([hmim][Tf2N]), at temperatures ranging from 303.15 K to 343.15 K and pressures up to 1.1 MPa were determined. The solubility values were correlated using the Krichevsky–Kasarnovsky equation and Henry’s constants were obtained at different temperatures. Partial molar thermodynamic functions of solvation such as standard Gibbs free energy, enthalpy, and entropy were calculated from the solubility results. Comparison of the values obtained show that the solubility of H2S in these three ionic liquids was in the sequence: [hmim][BF4] > [hmim][PF6]  [hmim][Tf2N].  相似文献   

4.
Syntheses and Crystal Structures of [Cu4(As4Ph4)2(PRR′2)4], [Cu14(AsPh)6(SCN)2(PEt2Ph)8], [Cu14(AsPh)6Cl2(PRR′2)8], [Cu12(AsPh)6(PPh3)6], [Cu10(AsPh)4Cl2(PMe3)8], [Cu12(AsSiMe3)6(PRR′2)6], and [Cu8(AsSiMe3)4(PtBu3)4] (R, R′ = Organic Groups) Through the reaction of CuSCN with AsPh(SiMe3)2 in the presence of tertiary phosphines the compounds [Cu4(As4Ph4)2(PRR′2)4] ( 1 – 3 ) ( 1 : R = R′ = nPr, 2 : R = R′ = Et; 3 : R = Me, R′ = nPr) and [Cu14(AsPh)6(SCN)2(PEt2Ph)8] ( 4 ) can be synthesised. Using CuCl instead of CuSCN results to the cluster complexes [Cu14(AsPh)6Cl2(PRR′2)8] ( 5–6 ) ( 5 : R = R′ = Et; 6 : R = Me, R′ = nPr), [Cu12(AsPh)6(PPh3)6] ( 7 ) and [Cu10(AsPh)4Cl2(PMe3)8] ( 8 ). Through reactions of CuOAc with As(SiMe3)3 in the presence of tertiary phosphines the compounds [Cu12(AsSiMe3)6(PRR′2)6] ( 9 – 11 ) ( 9 : R = R′ = Et; 10 : R = Ph, R′ = Et; 11 : R = Et, R′ = Ph) and [Cu8(AsSiMe3)4(PtBu3)4] ( 12 ) can be obtained. In each case the products were characterised by single‐crystal‐X‐ray‐structure‐analyses. As the main structure element 1 – 3 each have two As4Ph42–‐chains as ligands. In contrast 4 – 12 contain discrete AsR2–ligands.  相似文献   

5.
6.
The thermally unstable compound [Hg[P(C(6)F(5))(2)](2)] was obtained from the reaction of mercury cyanide and bis(pentafluorophenyl)phosphane in DMF solution and characterized by multinuclear NMR spectroscopy. The thermally stable trinuclear compounds [Hg[(mu-P(CF(3))(2))W(CO)(5)](2)] and [Hg[(mu-P(C(6)F(5))(2))W(CO)(5)](2)] are isolated and completely characterized. The higher order NMR spectra exhibiting multinuclear satellite systems have been sufficiently analyzed. [Hg[(mu-P(CF(3))(2))W(CO)(5)](2)].2DMF crystallizes in the monoclinic space group C2/c with a = 2366.2(3) pm, b = 1046.9(1) pm, c = 104.0(1) pm, and beta = 104.01(1) degrees. Structural, NMR spectroscopic, and vibrational data prove a weak coordination of the two DMF molecules. Structural, vibrational, and NMR spectroscopic evidence is given for a successive weakening of the pi back-bonding effect of the W-P bond in the order [W(CO)(5)PH(R(f))(2)], [Hg[(mu-P(R(f))(2))W(CO)(5)](2)], and [W[P(R(f))(2)](CO)(5)](-) with R(f) = C(6)F(5) and CF(3). The pi back-bonding effect of the W-C bonds increases vice versa.  相似文献   

7.
On the Crystal Structures of the Cyano Complexes [Co(NH3)6][Fe(CN)6], [Co(NH3)6]2[Ni(CN)4]3 · 2 H2O, and [Cu(en)2][Ni(CN)4] Of the three title compounds X‐ray structure determinations were performed with single crystals. [Co(NH3)6][Fe(CN)6] (a = 1098.6(6), c = 1084.6(6) pm, R3, Z = 3) crystallizes with the CsCl‐like [Co(NH3)6][Co(CN)6] type structure. [Co(NH3)6]2[Ni(CN)4]3 · 2 H2O (a = 805.7(5), b = 855.7(5), c = 1205.3(7) pm, α = 86.32(3), β = 100.13(3), γ = 90.54(3)°, P1, Z = 1) exhibits a related cation lattice, the one cavity of which is occupied by one anion and 2 H2O, whereas the other contains two anions parallel to each other with distance Ni…Ni: 423,3 pm. For [Cu(en)2][Ni(CN)4] (a = 650.5(3), b = 729.0(3), c = 796.5(4) pm, α = 106.67(2), β = 91.46(3), γ = 106.96(2)°, P1, Z = 1) the results of a structure determination published earlier have been confirmed. The compound is weakly paramagnetic and obeys the Curie‐Weiss law in the range T < 100 K. The distances within the complex ions of the compounds investigated (Co–N: 195.7 and 196.4 pm, Ni–C: 186.4 and 186.9 pm, resp.) and their hydrogen bridge relations are discussed.  相似文献   

8.
New Phosphorus-bridged Transition Metal Carbonyl Complexes. The Crystal Structures of [Re2(CO)7(PtBu)3], [Co4(CO)10(PtBu)2], [Ir4(CO)6(PtBu)6], and [Ni4(CO)10(PiPr)6], (PtBu)3 reacts with [Mn2(CO)10], [Re2(CO)10], [Co2(CO)8] and [Ir4(CO)12] to form the multinuclear complexes [M2(CO)7(PtBu)3] (M = Re ( 1 ), Mn ( 5 )), [Co4(CO)10(PtBu)2] ( 2 ) and [Ir4(CO)6(PtBu)6] ( 3 ). The reaction of (PiPr)3 with [Ni(CO)4] leads to the tetranuclear cluster [Ni4(CO)10(PiPr)6] ( 4 ). The complex structures were obtained by X-ray single crystal structure analysis: ( 1 : space group P1 (Nr. 2), Z = 2, a = 917.8(3) pm, b = 926.4(3) pm, c = 1 705.6(7) pm, α = 79.75(3)°, β = 85.21(3)°, γ = 66.33(2)°; 2 : space group C2/c (Nr. 15), Z = 4, a = 1 347.7(6) pm, b = 1 032.0(3) pm, c = 1 935.6(8) pm, β = 105.67(2)°; 3 : space group P1 (Nr. 2), Z = 4, a = 1 096.7(4)pm, b = 1 889.8(10)pm, c = 2 485.1(12) pm, α = 75.79(3)°, β = 84.29(3)°, γ = 74.96(3)°; 4 : space group P21/c (Nr. 14), Z = 4, a = 2 002.8(5) pm, b = 1 137.2(8) pm, c = 1 872.5(5) pm, β = 95.52(2)°).  相似文献   

9.
Reactions of XeO2F2 with the strong fluoride ion acceptors, AsF5 and SbF5, in anhydrous HF solvent give rise to alpha- and beta-[XeO2F][SbF6], [XeO2F][AsF6], and [FO2XeFXeO2F][AsF6]. The crystal structures of alpha-[XeO2F][SbF6] and [XeO2F][AsF6] consist of trigonal-pyramidal XeO2F+ cations, which are consistent with an AXY2E VSEPR arrangement, and distorted octahedral MF6- (M = As, Sb) anions. The beta-phase of [XeO2F][SbF6] is a tetramer in which the xenon atoms of four XeO2F+ cations and the antimony atoms of four SbF6- anions are positioned at alternate corners of a cube. The FO2XeFXeO2F+ cations of [FO(2)XeFXeO2F][AsF6] are comprised of two XeO2F units that are bridged by a fluorine atom, providing a bent Xe- - -F- - -Xe arrangement. The angle subtended by the bridging fluorine atom, a xenon atom, and the terminal fluorine atom of the XeO2F group is bent toward the valence electron lone-pair domain on xenon, so that each F- - -XeO2F moiety resembles the AX(2)Y(2)E arrangement and geometry of the parent XeO2F2 molecule. Reaction of XeF6 with [H3O][SbF6] in a 1:2 molar ratio in anhydrous HF predominantly yielded [XeF5][SbF6].XeOF4 as well as [XeO2F][Sb2F11]. The crystal structure of the former salt was also determined. The energy-minimized, gas-phase MP2 geometries for the XeO2F+ and FO2XeFXeO2F+ cations are compared with the experimental and calculated geometries of the related species IO2F, TeO2F-, XeO2(OTeF5)+, XeO2F2, and XeO2(OTeF5)2. The bonding in these species has been described by natural bond orbital and electron localization function analyses. The standard enthalpies and Gibbs free energies for reactions leading to XeO2F+ and FO2XeFXeO2F+ salts from MF5 (M = As, Sb) and XeO2F2 were obtained from Born-Haber cycles and are mildly exothermic and positive, respectively. When the reactions are carried out in anhydrous HF at low temperatures, the salts are readily formed and crystallized from the reaction medium. With the exception of [XeO2F][AsF6], the XeO2F+ and FO2XeFXeO2F+ salts are kinetically stable toward dissociation to XeO2F2 and MF5 at room temperature. The salt, [XeO2F][AsF6], readily dissociates to [FO2XeFXeO2F][AsF6] and AsF5 under dynamic vacuum at 0 degree C. The decompositions of XeO2F+ salts to the corresponding XeF+ salts and O2 are exothermic and spontaneous but slow at room temperature.  相似文献   

10.
The density, refractive index, interfacial tension, and viscosity of ionic liquids (ILs) [EMIM][EtSO 4] (1-ethyl-3-methylimidazolium ethylsulfate), [EMIM][NTf 2] (1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide), [EMIM][N(CN) 2] (1-ethyl-3-methylimidazolium dicyanimide), and [OMA][NTf 2] (trioctylmethylammonium bis(trifluoromethylsulfonyl)imide) were studied in dependence on temperature at atmospheric pressure both by conventional techniques and by surface light scattering (SLS). A vibrating tube densimeter was used for the measurement of density at temperatures from (273.15 to 363.15) K and the results have an expanded uncertainty ( k = 2) of +/-0.02%. Using an Abbe refractometer, the refractive index was measured for temperatures between (283.15 and 313.15) K with an expanded uncertainty ( k = 2) of about +/-0.0005. The interfacial tension was obtained from the pendant drop technique at a temperature of 293.15 K with an expanded uncertainty ( k = 2) of +/-1%. For higher and lower temperatures, the interfacial tension was estimated by an adequate prediction scheme based on the datum at 293.15 K and the temperature dependence of density. For the ILs studied within this work, at a first order approximation, the quantity directly accessible by the SLS technique was the ratio of surface tension to dynamic viscosity. By combining the experimental results of the SLS technique with density and interfacial tension from conventional techniques, the dynamic viscosity could be obtained for temperatures between (273.15 and 333.15) K with an estimated expanded uncertainty ( k = 2) of less than +/-3%. The measured density, refractive index, and viscosity are represented by interpolating expressions with differences between the experimental and calculated values that are comparable with but always smaller than the expanded uncertainties ( k = 2). Besides a comparison with the literature, the influence of structural variations on the thermophysical properties of the ILs is discussed in detail. The viscosities mostly agree with values reported in the literature within the combined estimated expanded uncertainties ( k = 2) of the measurements while our density and interfacial tension data differ by more than +/-1% and +/-5%.  相似文献   

11.
12.
Crystal Structure of the Hexaquomagnesiumhexahalogenodimercurates [Mg(OH2)6][Hg2X6] (X = Br, I) Hexaquodimercurates [Mg(OH2)6][Hg2X6] (X = Br, I) were obtained by crystallization from aqueous solutions of HgX2 and MgX2. The crystal structure of the monoclinic compounds consists of binuclear Hg2X6 anions and octahedral Mg(OH2)6 cations.  相似文献   

13.
Synthesis and Structure of the Phosphorus-bridged Transition Metal Complexes [Fe2(CO)6(PR)6] (R = tBu, iPr), [Fe2(CO)4(PiPr)6], [Fe2(CO)3Cl2(PtBu)5], [Co4(CO)10(PiPr)3], [Ni5(CO)10(PiPr)6], and [Ir4(C8H12)4Cl2(PPh)4] (PtBu)3 and (PiPr)3 react with [Fe2(CO)9] to form the dinuclear complexes [Fe2(CO)6(PR)6] (R = tBu: 1 ; iPr: 2 ). 2 is also formed besides [Fe2(CO)4(PiPr)6] ( 3 ) in the reaction of [Fe(CO)5] with (PiPr)3. When PiPr(PtBu)2 and PiPrCl2 are allowed to react with [Fe2(CO)9] it is possible to isolate [Fe2(CO)3Cl2(PtBu)5] ( 4 ). The reactions of (PiPr)3 with [Co2(CO)8] and [Ni(CO)4] lead to the tetra- and pentanuclear clusters [Co4(CO)10(PiPr)3] ( 5 ), [Ni4(CO)10(PiPr)6] [2] and [Ni5(CO)10(PiPr)6] ( 6 ). Finally the reaction of [Ir(C8H12)Cl]2 with K2(PPh)4 leads to the complex [Ir4(C8H12)4Cl2(PPh)4] ( 7 ). The structures of 1–7 were obtained by X-ray single crystal structure analysis (1: space group P21/c (Nr. 14), Z = 8, a = 1 758.8(16) pm, b = 3 625.6(18) pm, c = 1 202.7(7) pm, β = 90.07(3)°; 2 : space group P1 (Nr. 2), Z = 1, a = 880.0(2) pm, b = 932.3(3) pm, c = 1 073.7(2) pm, α = 79.07(2)°, β = 86.93(2)°, γ = 72.23(2)°; 3 : space group Pbca (Nr. 61), Z = 8, a = 952.6(8) pm, b = 1 787.6(12) pm, c = 3 697.2(30) pm; 4 : space group P21/n (Nr. 14), Z = 4, a = 968.0(4) pm, b = 3 362.5(15) pm, c = 1 051.6(3) pm, β = 109.71(2)°; 5 : space group P21/n (Nr. 14), Z = 4, a = 1 040.7(5) pm, b = 1 686.0(5) pm, c = 1 567.7(9) pm, β = 93.88(4)°; 6 : space group Pbca (Nr. 61), Z = 8, a = 1 904.1(8) pm, b = 1 959.9(8) pm, c = 2 309.7(9) pm. 7 : space group P1 (Nr. 2), Z = 2, a = 1 374.4(7) pm, b = 1 476.0(8) pm, c = 1 653.2(9) pm, α = 83.87(4)°, β = 88.76(4)°, γ = 88.28(4)°).  相似文献   

14.
The salt, [F5TeN(H)Xe][AsF6], has been synthesized in the natural abundance and 99.5% 15N-enriched forms. The F5TeN(H)Xe+ cation has been obtained as the product of the reactions of [F5TeNH3][AsF6] with XeF2 (HF and BrF5 solvents) and F5TeNH2 with [XeF][AsF6] (HF solvent) and characterized in solution by 129Xe, 19F, 125Te, 1H, and 15N NMR spectroscopy at -60 to -30 degrees C. The orange [F5TeN(H)Xe][AsF6] and colorless [F5TeNH3][AsF6] salts were crystallized as a mixture from HF solvent at -35 degrees C and were characterized by Raman spectroscopy at -165 degrees C and by X-ray crystallography. The crystal structure of the low-temperature phase, alpha-F5TeNH2, was obtained by crystallization from liquid SO2 between -50 and -70 degrees C and is fully ordered. The high-temperature phase, beta-F5TeNH2, was obtained by sublimation at room temperature and exhibits a 6-fold disorder. Decomposition of [F5TeN(H)Xe][AsF6] in the solid state was rapid above -30 degrees C. The decomposition of F5TeN(H)Xe+ in HF and BrF5 solution at -33 degrees C proceeded by fluorination at nitrogen to give F5TeNF2 and Xe gas. Electronic structure calculations at the Hartree-Fock and local density-functional theory levels were used to calculate the gas-phase geometries, charges, Mayer bond orders, and Mayer valencies of F5TeNH2, F5TeNH3+, F5TeN(H)Xe+, [F5TeN(H)Xe][AsF6], F5TeNF2, and F5TeN2- and to assign their experimental vibrational frequencies. The F5TeN(H)Xe+ and the ion pair, [F5TeN(H)Xe][AsF6], systems were also calculated at the MP2 and gradient-corrected (B3LYP) levels.  相似文献   

15.
16.
The paramagnetic dithiolene complex [Cu(mnt)2]2– (mnt: 1,2-dicyanoethylene-1,2-dithiolate) is used as metalloligand for coordination of dicationic [Cu(en)2]2+ (en: ethylenediamine) complex, leading to the formation of chains of alternating [Cu(mnt)2]2–and [Cu(en)2]2+ moieties through C≡N•••Cu•••N≡C trans coordination with N•••Cu distance of 2.664(4) Å and a noticeable deviation from linearity as the C≡N•••Cu angle amounts to 146.3(3)°. The [Cu(en)2][Cu(mnt)2] salt exhibits weak antiferromagnetic interactions between spin carriers along the chains and slightly stronger inter-chain [Cu(mnt)2]•••[Cu(mnt)2] antiferromagnetic interactions through intermolecular S•••S contacts.  相似文献   

17.
Reactions of K4[SnSe4], Na4[GeS4] or Ba2[GeSe4] with different 1,2‐diaminoethane (= en) coordinated complexes of CrCl3 ([Cr(en)2Cl2]Cl or [Cr(en)3]Cl3) in MeOH or aqueous solution yielded three novel compounds that contain complexes of Cr3+ with ortho‐chalcogenotetrelate anions [E′E4]4? (E′ = Ge, Sn; E = S; Se): the crystal structures of [K6(MeOH)9][Sn2Se6][Cr(en)2(SnSe4)]2 ( 1 ), [Na(H2O)4][Cr(en)3]2[GeS3OH]2[Cr(en)2(GeS4)] ( 2 ), and [Ba(H2O)10][{Cr(en)}2(GeSe4)2] ( 4 ) have been determined by means of single crystal X‐ray diffraction ( 1 : triclinic space group ; lattice dimensions at 203 K: a = 1175.7(2), b = 1315.3(3), c = 1326.7(3) pm, α = 61.99(3)°, β = 64.05(3)°, γ = 83.57(3)°, V = 1617.4(6)·106 pm3; R1 [I > 2σ(I)] = 0.0788; wR2 = 0.1306; 2 : monoclinic space group C2/c; lattice dimensions at 203 K: a = 2445.3(5), b = 1442.5(3), c = 1579.3(3) pm, β = 94.61(3)°, V = 5552.9(19)·106 pm3; R1 [I > 2σ(I)] = 0.0801; wR2 = 0.2046; 4 : triclinic space group ; lattice dimension at 203 K: a = 1198.4(2), b = 1236.8(3), c = 1297.5(3) pm, α = 65.69(3)°, β = 63.35(3)°, γ = 81.21(3)°, V = 1565.2(5)·106 pm3; R1 [I > 2σ(I)] = 0.0732; wR2 = 0.1855). 1 and 2 show the yet unprecedented complexation of transition metal ions by non‐bridging, single chalcogenotetrelate ligands to produce dinuclear, heterobimetallic complexes. Compound 2 contains the first structurally characterized complex with an ortho‐thiogermanate ligand. The formation of these compounds, and of a by‐product of 2 , [Cr(en)3][GeS3OH]·6H2O ( 3 : monoclinic space group C2/c; lattice dimensions at 203 K: a = 2396.8(5), b = 1463.4(3), c = 1740.1(4) pm, β = 132.99(3)°, V = 4463.8(15)·106 pm3; R1 [I > 2σ(I)] = 0.0462; wR2 = 0.1058), provides some insight in fundamental differences between the reaction behavior of [SnE4]4? anions one the one hand and [GeE4]4? anions on the other hand. The crucial role of the counterion charge becomes evident when comparing the structure motifs of the ternary anions in 1 and 2 with that observed in the Ba2+ compound 4 .  相似文献   

18.
1INTRODUCTIONThepolynucleard10metalcomplexesarepotentialluminescentsensormaterialsduetotheirattractivephotochemicalandphotophysicalpro-perties[1,2].Lowdimensionalmetal-organichalidecomplexeshavereceivedever-interestingattentioninrecentyearsfortheirpotentialapplicationsaselectronicandcatalyticmaterials[3,4].RecentlyHomo-metaloligomersandthechainsofcopperhavebeenreportedbyZubietaandthecoworkersviahydrothermalsyntheses[5,6].Theexistingexamplesofcopperwithmercuryareextremelyrare[7].Intherece…  相似文献   

19.
Crown Ether Complexes of Lead(II). The Crystal Structures of [PbCl(18-Krone-6)][SbCl6], [Pb(18-Krone-6)(CH3CN)3][SbCl6]2 und [Pb(15-Krone-5)2][SbCl6]2 . [PbCl(18-crown-6)][SbCl6] has been prepared in low yield besides [Pb(CH3)2(18-crown-6)][SbCl6]2 by the reaction of Pb(CH3)2Cl2 with antimony pentachloride in acetonitrile solution in the presence of 18-crown-6, forming pale-yellow crystals. The other two title compounds are formed as colourless crystals by the reaction of PbCl2 with antimony pentachloride in acetonitrile solutions in the presence of 18-crown-6 and 15-crown-5, respectively. The complexes were characterized by IR spectroscopy and by crystal structure determinations. [PbCl(18-crown-6)][SbCl6]: Space group P21/c, Z = 8, 5 003 observed unique reflections, R = 0.046. Lattice dimensions at - 80°C: a = 1 386.9; b = 1 642.7; c = 2 172.1 pm, β = 92.95°. The lead atom in the cation [PbCl(18-crown-6)]+ is surrounded in an almost hexagonal-planar construction by the six oxygen atoms of the crown ether and an axially oriented Cl atom. [Pb(18-crown-6)(CH3CN)3][SbCl6]2: Space group P1 , Z = 2, 6 128 observed unique reflections, R = 0.076. Lattice dimensions at - 70°C: a = 1 228.0; b = 1 422.9; c = 1 463.2 pm, α = 69.08°; β = 65.71°; γ = 64.51°. In the cation [Pb(18-crown-6)(CH3CN)3]2+ the lead atom is coordinated by the six oxygen atoms of the crown ether and by the three nitrogen atoms of the acetonitrile molecules. The structure determination is restricted by disorder. [Pb( 15-crown-5)2][SbCI6]2: Space group P63/m, Z = 6, 5 857 observed unique reflections, R = 0.059. Lattice dimensions at -70°C: a = b = 2 198.5; c = 1499.4 pm, α = β = 90°, γ = 120°. In the cation [Pb(l5-crown-5)2]2 the lead atom is sandwich-like coordinated by the ten oxygen atoms of the two crown ether molecules. The structure determination is restricted by disorder.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号