首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The electrochemical quartz crystal microbalance (EQCM) was used to study adsorption/desorption of perchlorate and perrhenate ions on a bare polycrystalline gold electrode. An electrode mass change in perrhenate solution was about double that of perchlorate. The equivalent mass of adsorbed anions (about 260 and 120 g F−1 respectively) suggests adsorption of perchlorate and perrhenate anions on a polycrystalline gold electrode in the double-layer region. Water molecules are partially expelled from the gold surface during the initial stages of anion adsorption. The water loss is about three times larger for perrhenate compared to perchlorate due to the bigger ionic radius (volume) of the perrhenate anion.  相似文献   

2.
The possibility of using a novel comb polymer consisting of a chitosan backbone with grafted 44 units long poly(ethylene oxide) side chains for reducing nonspecific protein adsorption to gold surfaces functionalized by COOH-terminated thiols has been explored. The comb polymer was attached to the surface in three different ways: by solution adsorption, covalent coupling, and microcontact printing. The protein repellent properties were tested by monitoring the adsorption of bovine serum albumin and fibrinogen employing surface plasmon resonance and imaging null ellipsometry. It was found that a significant reduction in protein adsorption is achieved as the comb polymer layer is sufficiently dense. For solution adsorption this was achieved by adsorption from high pH solutions. On the other hand, the best performance of the microcontact printed surfaces was obtained when the stamp was inked either at low or at high pH. For a given comb polymer layer thickness/poly(ethylene oxide) density, significant differences in protein repellent properties were observed between the different preparation methods, and it is suggested that a reduction in the mobility of the comb polymer layer generated by covalent attachment favors a reduced protein adsorption.  相似文献   

3.
The cyclic voltammetry behaviour of gold in aqueous media is often regarded in very simple terms as a combination of two distinct processes, double layer charging/discharging and monolayer oxide formation/removal. This view is questioned here on the basis of both the present results and earlier independent data by other authors. It was demonstrated in the present case that both severe cathodization or thermal pretreatment of polycrystalline gold in acid solution resulted in the appearance of substantial Faradaic responses in the double layer region. Such anamolous behaviour, as outlined recently also for other metals, is rationalized in terms of the presence of active metal atoms (which undergo premonolayer oxidation) at the electrode surface. Such behaviour, which is also assumed to correspond to that of active sites on conventional gold surfaces, is assumed to be of vital importance in electrocatalysis; in many instances the latter process is also quite marked in the double layer region. Received: 26 July 1999 / Accepted: 7 September 1999  相似文献   

4.
Monothiol-terminated hyperbranched polyglycerols (HPGs) were synthesized by ring-opening polymerization of glycidol from partially deprotonated 2,2'-dihydroxyethane disulfide as the initiator and subsequent reduction of the disulfide group. Two molecular weights of HPG thiols were synthesized. The molecular weights of the polymers were determined by MALDI-TOF analysis, and the presence of thiol was verified by Ellman's assay. The self-assembly of HPG thiols on gold was studied and compared with that of linear poly(ethylene glycol) (PEG) thiols utilizing various surface analysis techniques. Monothiol-functionalized HPGs readily adsorbed to a gold surface and formed highly uniform thin films on the surface. The graft density of the HPG layer decreased with an increase in the molecular weight of the polymer. The amount of polymer on the surface increased with increasing incubation concentration and saturated above 6 g/L polymer concentration. Generally, HPG thiols gave lower graft density compared to linear PEG thiols of similar molecular weight. AFM morphological studies showed that HPG thiols form more uniform and smooth surface films compared to PEG thiols. Incubation of a polymer-coated surface (HPG thiols and PEG thiols) with bovine serum albumin and immunoglobulin showed that the high molecular weight hyperbranched polyglycerol was more resistant to protein adsorption than linear PEG of similar molecular weight or lower molecular weight HPG. The protein adsorption decreased with increasing graft density of the HPG chains on the surface. Our results show that HPG could be a good alternative to PEG in the development of nonfouling functional surfaces.  相似文献   

5.
Abounding potential technological applications is one of the many reasons why adsorption of aliphatic thiols on gold surface is a subject of intense research by many research groups. Understanding and exploring the nature of adsorbed species, the site of adsorption and the nature of interaction between adsorbed species and the gold surface using experimental and theoretical investigations is an active area of pursuit. However, despite a large number of investigations to understand the atomistic structures of thiols on Au(111), some of the basic issues are still unaddressed. For instance, there is still no clear information about the mechanism of adsorption of alkylthiol on gold surface. Furthermore, the reactivity and mechanism of adsorption of alkylthiol is likely to differ when gold adatoms and/or vacancies in the gold layers are considered. In this work, we have tackled these issues by computing the stationary states involved in the thiols adsorption in order to shed light on the kinetics aspects of adsorption process. In this respect, we have considered a variety of thiols into consideration such as methylthiol, dimethylsulfide, dimethyldisulfide, thioacetates, and thiocyanates. We have also considered the cleavage mechanism in the clean and the reconstructed surface scenario and the structure, energetics and spin densities have been computed using electronic structure calculations. For all the studied cases, an homolytic cleavage of CH3S–X (X = H, CH3, SCH3, CN, and COCH3) bond has been found to occur upon adsorption on the gold surface.  相似文献   

6.
Infrared reflexion-absorption spectroscopy was performed on gold electrodes which had been emersed from aqueous potassium cyanate electrolytes at different potentials. New information was, thereby, obtained on the process of emersion and the electrosorption of cyanate on gold.The polycrystalline gold electrodes could be emersed without any adhering solution (“hydrophobic”) only when traces of organic substances were present in the electrolyte. On such emersed electrodes the potential-dependent adsorption of cyanate was observed by the asymmetric stretching vibration at 2185 cm?1, and by hot bands. At the potential of anodic gold oxide formation the surface concentration of cyanate was found to drop to near zero.  相似文献   

7.
Polystyrene-b-poly(N-isopropylacrylamide) (PS-b-PNIPAM) diblock copolymers either with or without thiol end groups, depending on the relative length of the two blocks, form micelles or vesicles in water. The adsorption of such micelles or vesicles on a gold surface from aqueous solution was investigated in situ at 20 degrees C by use of a quartz crystal microbalance with dissipation monitoring (QCM-D). The changes in frequency (Deltaf) and dissipation (DeltaD) revealed that the micelles and vesicles without thiol groups were intact with some deformation when they were deposited on the surface. On the other hand, the micelles and vesicles with thiol groups at the end of PNIPAM blocks would transform into trilayers due to the strong interaction between thiols and gold surface.  相似文献   

8.
The influence of bromine adsorption on copper electrodeposition on a polycrystalline gold electrode modified with self-assembled monolayers (SAMs) has been investigated by chronoamperometry and cyclic voltammetry. It was found that the deposition potential of copper was shifted negatively due to the SAMs. The hydrogen bond interaction between omega-carboxyl thiols decreased the defect density of the SAMs and significantly retarded the deposition of copper. The presence of bromide anions also shifted the potential more negatively through adsorption into the defects of SAMs. Copyright 2001 Academic Press.  相似文献   

9.
Using an optical reflectometer with impinging-jet system, the adsorption from aqueous solution onto gold of three charged macromolecules has been studied: the strong linear-chain polyelectrolyte polyvinyl pyridine (PVP(+)), the fifth-generation poly(propylene imine) dendrimer DAB-64, which has a pH-dependent charge and a relatively fixed shape, and the protein lysozyme, of which both the charge and the structure-stability are dependent on solution composition. Experimental conditions that have been varied include the adsorbate concentration, electrolyte concentration, pH, and externally applied potential across the gold/solution interface. Making use of the earlier established dependency of the double layer potential of the gold substrate on solution conditions and externally applied potential, the results of measurements as a function of pH and as a function of external potential control are compared. The total set of results enables us to draw conclusions with respect to the relative importance of electrostatic interactions for the adsorption process. PVP(+) adsorption follows the electric potential of the gold/solution interface and is further determined by a rather strong nonelectrostatic affinity between segments and surface. The adsorption behavior of DAB-64 is not quite understood, but electrostatic interactions with the gold surface seem to play a minor role. For lysozyme, surface-induced conformational changes dominate the adsorption process. The extent of spreading of the molecules decreases with increasing polarity of the surface, resulting in a minimum in adsorbed amount around the point of zero potential of the gold.  相似文献   

10.
Wettability was controlled in a rational manner by individually and simultaneously manipulating surface topography and surface chemical structure. The first stage of this research involved the adsorption of charged submicrometer polystyrene latex particles to oppositely charged poly(ethylene terephthalate) (PET) film samples to form surfaces with different topographies/roughness; adsorption time, solution pH, solution ionic strength, latex particle size, and substrate charge density are external variables that were controlled. The introduction of discrete functional groups to smooth and rough surfaces through organic transformations was carried out in the second stage. Amine groups (-NH(2)) and alcohol groups (-OH) were introduced onto smooth PET surfaces by amidation with poly(allylamine) and adsorption with poly(vinyl alcohol) (PVOH), respectively. On latex particle adsorbed surfaces, a thin layer of gold was evaporated first to prevent particle redistribution before chemical transformation. Reactions with functionalized thiols and adsorption with PVOH on patterned gold surfaces successfully enhanced surface hydrophobicity and hydrophilicity. Particle size and biomodal particle size distribution affect both hydrophobicity and hydrophilicity. A very hydrophobic surface exhibiting water contact angles of 150 degrees /126 degrees (theta(A)/theta(R)) prepared by adsorption of 1-octadecanethiol and a hydrophilic surface with water contact angles of 18 degrees /8 degrees (theta(A)/theta(R)) prepared by adsorption of PVOH were prepared on gold-coated surfaces containing both 0.35 and 0.1 microm latex particles. The combination of surface topography and surface-chemical functionality permits wettability control over a wide range.  相似文献   

11.
Coupled application of a version of the in-situ radiotracer ‘foil’ method and voltammetry provided information on the time-, potential-, concentration- and pH-dependent adsorption of 1-hydroxy-ethane-1,1-diphosphonic acid (HEDP) on a polycrystalline gold electrode, and on the effect of Zn2+ ions on the adsorption phenomena. Adsorption processes on the oxide-free surface of gold were observed to be potential-dependent in the potential range 0.05–1.00 V (versus RHE), while formation and irreversible accumulation of oxidation products of HEDP could be detected at E>1.00 V. The relative adsorption strength of HEDP (its dissociation and/or oxidation products) was found to be higher on an oxide-free gold surface than on an oxide-covered one. The surface excess of HEDP increased with increasing pH. Addition of Zn2+ ions to the solution exerted a substantial effect on the HEDP accumulation. Namely, significant differences in the surface coverage, as well as in the kinetics and mechanism of HEDP adsorption could be detected in the potential regions below and above E=0.2 V. Reduction of Zn(II) species at E≤0.1 V is probably coupled with the induced adsorption of HEDP on an Au electrode, leading to the formation of a polymolecular HEDP–Zn surface complex layer.  相似文献   

12.
A stimuli-response biological surface of L-cysteine was prepared on a polycrystalline gold surface from aqueous solution. The effect of the pH value of the rinsing solution on the surface composition was studied with X-ray photoelectron spectroscopy (XPS). Qualitative and quantitative analysis of the amino, carboxyl, and thiol functional groups of these self-assembled monolayers indicate that L-cysteine molecules exist in the neutral and zwitterionic forms and that they are sensitive to the pH of the rinsing solution. In addition, the wetting properties of the functionalized surface were studied by contact angle (CA) analysis: they were also dependent on the pH of the rinsing solution. Furthermore, it was shown that this functionalization process was reversible.  相似文献   

13.
Gold-selective adsorbents were prepared from mesoporous MCM-41 silica by grafting organic amine groups (i.e., RNH2, R2NH, and R3N; R=propyl). NH2-MCM-41, NRH-MCM-41, and NR2-MCM-41 displayed strong affinity for gold and at 1 mmol/g loading adsorbed 0.40, 0.33, and 0.20 mmol/g of gold. Copper and nickel were not adsorbed on these adsorbents. Grafting surface chemical moieties introduces heterogeneity on an otherwise uniform MCM-41 pore surface and metal adsorption is best described by the Freundlich adsorption model. A series of binary adsorption equilibrium studies with NH2-MCM-41 containing 2.2 mmol RNH2/g shows that NH2-MCM-41 adsorbs only gold from solutions containing copper and nickel with an adsorption capacity of 0.6 mol of Au/mol of RNH2 (1.1 mmol of Au/g of NH2-MCM-41). Copper and nickel were not adsorbed by NH2-MCM-41 regardless of the solution concentration, composition, and pH (i.e., 2 to 4) in the presence of gold. The LeVan and Vermeulen adsorption model based on a single component Freundlich isotherm and corrected for the anion effect accurately predicted the binary adsorptions. The adsorbed gold was completely recovered by a simple acid wash and the recovered gold solution is 99% pure. The regenerated NH2-MCM-41 remained 100% selective for gold removal and exhibited the same adsorption capacity even after several uses.  相似文献   

14.
The bonding of sulfur to surfaces of gold is an important subject in several areas of chemistry, physics, and materials science. Synchrotron-based high-resolution photoemission and first-principles density-functional (DF) slab calculations were used to study the interaction of sulfur with a well-defined Au(111) surface and polycrystalline gold. Our experimental and theoretical results show a complex behavior for the sulfur/Au(111) interface as a function of coverage and temperature. At small sulfur coverages, the adsorption of S on fcc hollow sites of the gold substrate is energetically more favorable than adsorption on bridge or a-top sites. Under these conditions, S behaves as a weak electron acceptor but substantially reduces the density-of-states that gold exhibits near the Fermi edge. As the sulfur coverage increases, there is a weakening of the Au-S bonds (with a simultaneous reduction in the Au --> S charge transfer and a modification in the S sp hybridization) that facilitates changes in adsorption site and eventually leads to S-S bonding. At sulfur coverages above 0.4 ML, S(2) and not atomic S is the more stable species on the gold surface. Formation of S(n)(n > 2) species occurs at sulfur coverages higher than a monolayer. Very similar trends were observed for the adsorption of sulfur on polycrystalline surfaces of gold. The S atoms bonded to Au(111) display a unique mobility/reactivity not seen on surfaces of early or late transition metals.  相似文献   

15.
The structure, the surface bonding, and the energetics of alkanethiols adsorbed on Cu(111), Ag(111), and Au(111) surfaces were studied under low and high coverages. The potential energy surfaces (PES) for the thiol/metal interaction were investigated in the absence and presence of externally applied electric fields in order to simulate the effect of the electrode potential on the surface bonding. The electric field affects the corrugation of the PES which decreases for negative fields and increases for positive fields. In the structural investigation, we considered the relaxation of the adsorbate and the surface. The highest relaxation in a direction perpendicular to the surface was observed for gold atoms, whereas silver atoms presented the highest relaxation in a plane parallel to the surface. The surface relaxation is more important in the low coverage limit. The surface bonding was investigated by means of the total and projected density of states analysis. The highest ionic character was observed on the copper surface whereas the highest covalent character occurs on gold. This leads to a strong dependence of the PES with the tilt angle of the adsorbate on Au(111) whereas this dependence is less pronounced on the other metals. Thus, the adsorbate-relaxation and the metal-relaxation contributions to the binding energy are more important on gold. The adsorption of thiols on gold was investigated on the 111 surface as well as on a surface with gold adatoms in order to elucidate the effect of thiols on the surface diffusion of gold. The CH(3)CH(2)S radical adsorbs ontop of the gold adatom. The diffusional barrier of the CH(3)CH(2)SAu species is lower than that for a bare gold adatom and is also lower than that for the bare thiol radical. The adsorption of the molecular species CH(3)SH and CH(3)CH(2)SH was also investigated on Au(111). They adsorb via the sulfur atom ontop of a gold atom. On the other hand, the adsorption of the alkanethiol radicals on the perfect 111 surfaces occurs on the face centered cubic (fcc)-bridge site in the low coverage limit for all metals and shifts toward the fcc site at high coverage on copper and silver.  相似文献   

16.
The adsorption and catalytic properties of Pd---Au and Pt---C alloy surfaces were investigated under low pressure conditions, with the real surface composition being monitored using Auger electron spectroscopy. Flash desorption experiments on O2 and NO, and steady state kinetic experiments involving the reduction of these substances by H2 were performed on polycrystalline alloy surfaces. For the Pd---Au system, O2 desorption was promoted by gold, as shown by the shift of O2 desorption toward lower temperature and a linear decrease in the saturated amount of O2 adsorption with increase in gold content. For the Pt---Cu system, O2 desorption was retarded by copper i.e. the O2 desorption temperature shifted upward with increase in copper content. In both the alloy systems, catalytic activities for the above reactions were significantly suppressed by the addition of gold or copper to the platinum group metals. The drop was more pronounced for NO reduction, suggesting that a larger ensemble of active platinum group metal atoms are necessary for NO dissociation.  相似文献   

17.
Effects of changing the interparticle separation on the surface plasmon bands of ultrathin films of gold nanoparticles have been investigated by examining the interaction of alkanethiols of varying chain length on nanocrystalline gold films generated at the organic-aqueous interface. Adsorption of alkanethiols causes blue-shifts of the surface plasmon adsorption band, the magnitude of the shift being proportional to the chain length. The disordered nanocrystals thus created (lambdamax, 530 m) are in equilibrium with the ordered nanocrystals in the film (lambdamax, 700 m) as indicated by an isosbestic point around 600 nm. Long chain thiols disintegrate or disorder the gold films more effectively, as demonstrated by the increased population of the thiol-capped gold nanocrystals in solution. The rate of interaction of the thiols with the film decreases with the decreasing chain length. The effect of an alkanethiol on the spectrum of the gold film is specific, in that the effects with long and short chains are reversible. The changes in the plasmon band of gold due to interparticle separation can be satisfactorily modeled on the basis of the Maxwell-Garnett formalism. Spectroscopic studies, augmented by calorimetric measurements, suggest that the interaction of alkanethiols involves two steps, the first step being the exothermic gold film-thiol interaction and the second step includes the endothermic disordering process followed by further thiol capping of isolated gold particles.  相似文献   

18.
The adsorption behavior of pyridine on a smooth polycrystalline gold electrode surface was investigated over a wide wavenumber region (2000–500 cm−1) by in situ infrared reflection absorption spectroscopy (IRAS). The reversible adsorption/desorption of pyridine was observed upon the change in applied electrode potential, and the adsorption state at positive potentials was found to depend strongly on the kind of halide ion used as a supporting electrolyte. Symmetry analysis of absorption bands observed revealed that pyridine molecules adsorb with the molecular axis (C2 axis) perpendicular to the electrode surface (vertical configuration) at positive potentials in 0.5 M KF, KCl and KBr solutions. A band due to the out-of-plane bending mode of the adsorbed pyridine molecule was observed at potentials more negative than ca. 0 V for 0.5 M KF solution containing 100 mM pyridine. We concluded that even in the 100 mM pyridine solution, adsorbed pyridine forms a monolayer and that the molecules reorient from a flat (parallel) to the vertical configuration as the potential becomes less negative. No bands due to adsorbed pyridine were detected for 0.5 M KI solution. The amount of adsorbed pyridine was found to depend strongly on the strength of specific adsorption of halide ions.  相似文献   

19.
This paper details the first use of a self-folding deep cavitand on a gold surface. A sulfide-footed deep, self-folding cavitand has been synthesized, and its attachment to a cleaned gold surface studied by electrochemical and SPR methods. Complete monolayer formation is possible if the cavitand folding is templated by noncovalent binding of choline or by addition of space-filling thiols to cover any gaps in the cavitand adsorption layer. The cavitand is capable of binding trimethylammonium-tagged guests from an aqueous medium and can be deposited in 2 × 2 microarrays on the surface for characterization by SPR imaging techniques. When biotin-labeled guests are used, the cavitand:guest construct can recognize and immobilize streptavidin proteins from aqueous solution, acting as an effective supramolecular biosensor for monitoring protein recognition.  相似文献   

20.
Model electrodes with defined mesoscopic structure were either generated by adsorption of surfactant stabilized metal clusters from colloidal solution on a support of gold or by electrochemical deposition of platinum on gold substrates. Both types of model electrodes were characterized by STM (scanning tunnelling microscopy), cyclic voltammetry and electrooxidation of adsorbed CO. The supported colloidal Pt as well as the electrochemically deposited Pt revealed different reactivities regarding the CO monolayer electrooxidation as compared to a polycrystalline Pt bulk electrode. In addition, in-situ FTIR (Fourier transformed infrared) spectroscopy was applied to characterize CO adsorbed on electrochemically deposited Pt on gold. Combined with the structural information from STM it seems likely that the differences regarding the catalytic properties of the model electrodes are due to different coverages of the substrate with catalyst particles. Received: 24 June 1996 / Revised: 29 November 1996 / Accepted: 4 December 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号