首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Preparation and Structure of M1? LnTa3O9 (Ln = Pr, Nd), X-Ray and Electronmicroscopical Investigations New ternary compounds M1? LnTa3O9 (Ln = Pr, Nd) could be prepared by chemical transport reaction in a temperature gradient T2 → T1 (T2 = 1100°C; T1 = 1000°C; CI2 as transport agent). M1 NdTa3O9 crystallizes in the monoclinic space group P 21/m with a = 5.3840(9) Å, b = 7.550(1) Å, c = 8.1911(9) Å and β = 92.46(1)°. The structure was refined to give R = 6.29% and Rw = 6.20%. It is built of double and single chains of corner-sharing TaO6 octahedra extended along the b-axis. Tunnels running along [010] are created by the framework of TaO6 octahedra. Ln (Ln = Pr, Nd) is located in these tunnels to levels of y = 1/4 and 3/4. A structure refinement for isostructural M1? PrTa3O9 led to a = 5.4051(7) Å, b = 7.5680(2) Å, c = 8.1964(9) Å, β = 92.38(2)° and R = 7.72%, Rw = 7.57%. By grinding in an agate mortar M1? LnTa3O9 transforms into M2? LnTa3O9, a new modification with a higher density. High resolution transmission electron microscopy images of the M1? PrTa3O9 structure were made along the [010] direction. They could be interpreted by comparing them with images calculated on the basis of the multi-slice method.  相似文献   

2.
Electronmicroscopic Investigations on Disordered Crystals of O? LaTa3O9, M? CeTa3O9, and M2? PrTa3O9 – Proof of a New M1? CeTa3O9-Modification High resolution electron microscope investigations on O? LaTa3O9 and M2? PrTa3O9 showed twinned areas in both cases. With the help of electron microscopic pictures and models of the crystal structures, respectively, we obtained informations about the structural imperfections. Furthermore we present images of thin crystals which contain areas of two different modifications M1? PrTa3O9 and M2? PrTa3O9. By comparing these images with the corresponding computed contrasts we obtained a structure model of the phase boundary. Investigations on crystals of M? CeTa3O9 showed small areas of a new modification M1? CeTa3O9 which is isotypic to M1? LnTa3O9 (Ln=Pr, Nd) according to electron diffraction and high resolution images.  相似文献   

3.
Preparation and Structure of New CeTa3O9 Modifications The modifications M? , O? and P? CeTa3O9 could be prepared by chemical transport reactions (T2 → T1; T2 = 1100°C; T1 = 1000°C) with chlorine as transport agent. M? CeTa3O9 crystallizes in the monoclinic space group C 2/m with a = 12.415(1) Å, b = 7.6317(8) Å, c = 6.5976(8) Å, β = 93.31(1)°; Z = 4; R = 4.88%, Rw = 3.67%. The structure consists of two types of Ta? O-polyhedra. Especially remarkable are chains of edge sharing pentagonal TaO7-bipyramids which are connected by TaO6-octahedra at opposite sides. Tunnels running along [010] are created by the framework of Ta? O-polyhedra and are filled with Ce in levels of y = 1/2 and y = 0. O? CeTa3O9 crystallizes orthorhombically with a = 6.5429(7) Å, b = 7.6491(7) Å, c = 12.583(1) Å and is isostructural to O? LaTa3O9 (space group: Pnma). O? CeTa3O9 contains the same characteristic structural units namely pentagonal TaO7-bipyramides and TaO6-octahedra. The difference between O? and M? CeTa3O9 is based on the orientation of the tunnels: in the orthorhombic modification they are arranged zigzag-like, in the latter parallel. Both modifications of CeTa3O9 can be irreversibly converted into the well-known perovskite-related P? CeTa3O9 structure with a lower density by heating in air to 1200°C.  相似文献   

4.
Chemical Transport Reactions of Compounds LnTa7O19 (Ln = La? Nd) and Structure Refinement of NdTa7O19 Crystals of compounds LnTa7O19 (Ln ? Na? Nd) could be obtained by chemical transport reactions (T2 → T1; T2 = 1100°C, T1 = 1000°C) using chlorine (p(Cl2; 298 K) = 1 atm) as transport agent. An increase of transport rate and an improvement of crystal growth was observed if small amounts of vanadium metal were added. Solid state reactions with mixtures of Ln2O3/Ta2O5 (1:7) in air (T ≈ 1400–1500°C), however, were not succesful because the resulting samples contained LnTa7O19 with other ternary phases as by-products. NdTa7O19 crystallizes in the well-known LaTa7O19-type structure with cell dimensions of a = 6.2229(3) Å, c = 19.939(2) Å and Z = 2. The crystal structure was refined in space groups P6 c2 (R = 3.35%, RW = 2.67%) and P63/mcm (R = 4.75%, RW = 3.88%). Taking aspects of structural chemistry, x-ray results and MAPLE calculations into account, however, the spacegroup P6 c2 should be preferred.  相似文献   

5.
Preparation and Structure of LaNb5O14 Single crystals of LaNb5O14 could be prepared by chemical transport reactions (T2 → T1; T2 = 1050°C; T1 = 950°C) using chlorine as transport agent. LaNb5O14 crystallizes in the orthorhombic space group Pbem with cell dimensions a = 3.8749(2) Å; b = 12.4407(6) Å and c = 20.2051(9) Å; Z = 4; R = 6.28%, Rw = 3.74%. The structure consists of two types of Nb? O-polyhedra. Especially remarkable are chains of edge-sharing pentagonal NbO7-bipyramids, which are interconnected by corner-sharing NbO6-octahedra. Tunnels running in a-direction are created by this framework of NbO6- and NbO7-polyhedra. Lanthanum atoms are located in these tunnels at levels inbetween the niobium atoms. The relationship to O? LaTa3O9 and M? CeTa3O9 type structures will be discussed.  相似文献   

6.
On Fluorides of Divalent Lanthanoids. III. New Fluoroperovskites of the MLn1?xLn′xF3 Type with M = Cs, Rb; Ln = Eu2+, Sm2+; Ln′ Yb2+ New fluoroperovskites with divalent lanthanoids have been prepared. They are: CsEu1?xYbxF3, yellow, with x = 0.25, a = 4.737(1) Å; x = 0.50, a = 4.696(1) Å; x = 0.75, a = 4.653(1) Å; CsSmxYb1?xF3, violet, with x = 0.25, a = 4.656(1) Å; x = 0.18, a = 4.645(1) Å, the latter mixed with Sm0.68Yb0.32F3, a = 5.781(1) Å; RbEuxYb1?xF3, orange, with x = 0.25, a = 4.573(1) Å; x = 0.23, a = 4.568(1) Å, the latter mixed with Eu0.94Yb0.06F2, a = 5.827(1) Å; RbSm0.13Yb0.87F3, brown, a = 4.555(1) Å.  相似文献   

7.
Ln3UO6Cl3 (Ln=La, Pr, Nd) — The First Oxochlorouranates of the Rare Earths . The new compounds Ln3UO6Cl3 (Ln=La, Pr, Nd) were prepared by heating stoichiometric amounts of LnOCl/Ln2O3/U3O8 (7 : 1 : 1) (Ln=La, Nd) and PrOCl/Pr6O11/U3O8 (12 : 1 : 2) in silica ampoules (5 d, 1000°C, Ln=La; 9 d 800°C, Ln=Pr, Nd) in the presence of an excess of chlorine [p(Cl2, 25°C)=1 atm]. Single crystals were obtained by chemical transport reactions using chlorine [p(Cl2, 25°C)=1 atm] as transport agent [T2=1000°C→T1=900°C (Ln=La); T2=840°C→T1=780°C (Ln=Pr, Nd)]. Crystals of Ln3UO6Cl3 (Ln=La, Pr, Nd) were investigated by X-ray diffraction methods and La3UO6Cl3 additionally by high resolution electron microscopy. The compounds Ln3UO6Cl3 crystallize in the hexagonal spacegroup P63/m (No. 176) with Z=2 formula units per unit cell. Isotypical structure refinements resulted in R=3.04% respectively Rw=1.91% (Ln=La), R=4.72% respectively Rw=3.80% (Ln=Pr) and R=3.99% respectively Rw=2.49% (Ln=Nd). Uranium is coordinated with six oxygen atoms forming a trigonal prism. Lanthanide ions are 10-coordinated (6 oxygen atoms, 4 chlorine atoms).  相似文献   

8.
Contributions on the Thermal Behaviour and Crystal Chemistry of Anhydrous Phosphates. XI. Synthesis and Crystal Structure of a Triclinic Modification of GeP2O7 A new triclinic modification of GeP2O7 can be obtained by hydrolysis of GeCl4 in conc. H3PO4 as a microcrystalline powder. Chemical transport experiments (950 → 850°C, transport agent: Cl2; p = 0.1 atm (298 K)) lead to the formation of small prisms (edge lengths up to 0.7 mm) of high refractive index at the lower temperature zone. The crystal structure determination [Spcgrp.: P1 ; Z = 2; a = 7.730(1) Å; b = 6.724(1) Å; c = 4.6543(8) Å; α = 105.39(1)°; β = 92.81(1)°; γ = 91.49(1)°; 1 358 independent I0; 94 parameters; conventional residual R1 = 3.1%] shows CN = 6 for Ge (regular octahedra: d?Ge1? O = 1.86 Å; d?Ge2? O = 1.85 Å) and P2O7-groups (d?P1? O = 1.53 Å; d?P2? O = 1.53 Å) with ∠ (P? O? P) = 126.5°. All O exhibit twofold coordination which is achieved either by two P or by one Ge- and one P. This modification of GeP2O7 bears a close relationship to the crystal structure of PtP2O7 and to the [MoP2O7]-host lattice of Na0.3MoP2O7. Remarkable differences to the well known cubic structures of many other metal(IV)-diphosphates occur.  相似文献   

9.
Synthesis, Structure, and Reactions of Vanadium Acid Esters VO(OR)3: Transesterification and Reaction with Oxalic Acid The reaction of tert.‐Butyl Vanadate VO(O‐tert.Bu)3 ( 1 ) with H2C2O4 in the primary alcohols ethanol and propanol results in the formation of (ROH)(RO)2OVV(C2O4)VVO(OR)2(HOR) (with R = C2H5 2 and R = C3H7 3 ). Compounds 2 and 3 are the first structurally characterized neutral, binuclear oxo‐oxalato‐complexes with pentavalent vanadium. The two vanadium atoms are connected by a bisbidentate oxalate group. The {VO6} coordination at each vanadium site is completed by a terminal oxo group, an alcohol ligand and two alcoxide groups. The binuclear molecules are connected to chains by hydrogen bonding. In the case of 2 a reversible isomorphic phase transition in the temperature range of –90 °C to –130 °C is observed. From methanolic solution the polymeric Methyl Vanadate [VO(OMe)3] ( 4 ) was obtained by transesterification. A report on the crystal structures of 1 , 2 and 3 as well as a redetermination of the structure of 4 is given. Crystal data: 1, orthorhombic, Cmc21, a = 16.61(2) Å, b = 9.274(6) Å, c = 10.784(7) Å, V = 1662(2) Å3, Z = 4, dc = 1.144 gcm–1; 2 (–90 ° C) , monoclinic, I2/a, a = 33.502(4) Å, b = 7.193(1) Å, c = 15.903(2) Å und β = 143.060(3)°, V = 2303(1) Å3, Z = 4, dc = 1.425 gcm–1; 2 (–130 ° C) , monoclinic, I2/a, a = 33.274(4) Å, b = 7.161(1) Å, c = 47.554(5) Å, β = 142.798(2)°, V = 6851(1) Å3, Z = 12, dc = 1.438 gcm–1; 3 , triklinic, P1, a = 9.017(5) Å, b = 9.754(5) Å, c = 16.359(9) Å, α = 94.87(2)°, β = 93.34(2)°, γ = 90.42(2)°, V = 1431(1) Å3, Z = 2, dc = 1.340 gcm–1; 4 , triklinic, P1, a = 8.443(2) Å, b = 8.545(2) Å, c = 9.665(2) Å, α = 103.202(5)°, β = 96.476(5)°, γ = 112.730(4)°, V = 610.2(2)Å3, Z = 4, dc = 1.742 gcm–1.  相似文献   

10.
New Dimeric Gold Selenolates: Preparation and Characterization of [(n-C4H9)4N]2[AuSSeC ? C(CN)2]2 and [(n-C4H9)4N]2[AuSe2C ? C(CN)2]2 The preparation and structural characterization of the dimeric AuI complexes of 1,1-dicyanoethene-2,2-thioseleonlate (i-mnts) and 1,1-dicyanoethene-2,2-diselenolate (i-mns), isolated as Bu4N salts, are described. They are isotype (monoclinic, space group P21/c, Z = 2) with lattice parameters: (Bu4N)2[Au(i-mnts)]2; a = 14.078(3) Å, b = 8.912(3) Å, c = 20.142(4) Å, β = 106.32(5)°; (Bu4N)2[Au(i-mns)]2; a = 13.998(3) Å, b = 9.125(3) Å, c = 20.039(2) Å, β = 105.12(5)°. Ab initio Hartree-Fock calculations based on the experimentally determined structure yield a positive value of the Au? Au bonding order suggesting weak bonding interactions between the d10 metal centres.  相似文献   

11.
On the Low Temperature Modifications of Ag6Si2O7 and Ag6Ge2O7 – Synthesis, Crystal Structure, and Comparison of Ag? Ag Distances For the first time, single crystals of Ag6Si2O7 and Ag6Ge2O7 have been obtained by solid state reactions of the binary oxides at temperatures of 350°C while applying oxygen pressures of 700 bar. According to the results of X-ray crystal structure determinations both compounds crystallize isostructural in P21 (Ag6Si2O7: a = 5.3043(5) Å, b = 9.7533(7) Å, c = 15.9283(13) Å, β = 91.165(8)°, 3881 independent reflections, R1 = 3.3%, wR2 = 7.2%; Ag6Ge2O7: a = 5.3713(4) Å, b = 9.9835(8) Å, c = 16.2249(14) Å, β = 90.904(8)°, 2111 independent reflections, R1 = 4.3%, wR2 = 6.0%, Z = 4). The crystal structures contain two independent M2O76? anions, one in a staggered, and the other in an ecliptic conformation. The cationic partial structure may be described as a distorted bcc arrangement of Ag+ and M4+. Comparison of the structures with respect to the Ag? Ag separations reveals the latter to be probably due to intrinsic d10–d10 bonding interactions as far as the range of 2.89 Å to 3.25 Å is considered.  相似文献   

12.
Preparation and Electronmicroscopic Investigation of New Compounds Ln3MO4Cl5 (Ln = La? Nd; M = Ge, V) By heating mixtures of LnOCl, LnCl3 und GeO2 (2:1:1) in evacuated silica tubes (Pt-shells inside) the compounds Ln3GeO4Cl5 (Ln = La? Nd) were prepared. The case that the temperature of preparation (La: T = 900°C, 8d; Ce: T = 800°C, 9d; Pr, Nd: T = 650°C, 13 d) had to be reduced from Ln = La to Ln = Nd indicates a decreasing thermodynamic stability in this direction. The compound La3VO4Cl5 was prepared by heating (900°C, 8d) a mixture (2:1:1) of LaOCl, LaCl3 and VO2 and was investigated by electronmicroscopic techniques.  相似文献   

13.
Chemistry and Structure Chemistry of Phosphides and Polyphosphides. 12 Pentaphosphides of Lanthanum and Neodymium, LaP5 and NdP5 LaP5 and NdP5 are formed on heating (750°C, evacuated silica ampoules) filings of La or Nd metal with red phosphorus. LaP5 crystallizes in the monoclinic space group P21/m with a = 9.768, b = 9.679, c = 5.576 Å, β = 105.25° and Z = 4 formula units. NdP5 crystallizes in the monoclinic space group P21/m with a = 4.938, b = 9.551, c = 5.444 Å, β = 103.27° and Z = 2 formula units. The structure of LaP5 is a superstructure variant of NdP5. La or Nd atoms and P atoms form layers which alternate along [100]. Within a layer the P atoms are connected to a net of condensed 12-rings. The number of 2-valent and 3-valent P atoms corresponds with the formula . The P? P distances vary from 2.16 to 2.22 Å. Each metal atom is linked with 8 P atoms (averages: La? P = 3.071 or Nd? P = 3.016 Å).  相似文献   

14.
Hydrothermal syntheses of single crystals of rare earth iodates, by decomposition of the corresponding periodate, are presented. This appears to be a generic method for making rare earth iodate crystals in a short period of time. Single crystal X‐ray diffraction structures of the four title compounds are presented. Sc(IO3)3: Space group R3, Z = 6, lattice dimensions at 100 K; a = b = 9.738(1), c = 13.938(1) Å; R1 = 0.0383. Y(IO3)3 · 2 H2O: Space group P1, Z = 2, lattice dimensions at 100 K: a = 7.3529(2), b = 10.5112(4), c = 7.0282(2) Å, α = 105.177(1)°, β = 109.814(1)°, γ = 95.179(1)°; R1 = 0.0421. La(IO3)3 · ? H2O: Space group Pn, Z = 2, lattice dimensions at 100 K: a = 7.219(2), b = 11.139(4), c = 10.708(3) Å, β = 91.86(1)°; R1 = 0.0733. Lu(IO3)3 · 2 H2O: Space group P1, Z = 2, lattice dimensions at 120 K: a = 7.2652(9), b = 7.4458(2), c = 9.3030(3) Å, α = 79.504(1)°, β = 84.755(1)°, γ = 71.676(2)°; R1 = 0.0349.  相似文献   

15.
Preparation of Halogeno Pyridine Rhenates(III), [ReX6?n(Py)n](3?n)? (X = Br, Cl; n = 1?3) Crystal Structures of trans-[(C4H9)4N][ReBr4(Py)2], mer-[ReCl3(Py)3], and mer- [ReBr3(Py)3] The mixed halogeno-pyridine-rhenates(III), [ReX6?n(Py)n](3?n)? (X = Br, Cl), n = 1?3, have been prepared for the first time by reaction of the tetrabutylammoniumsalts (TBA)2[ReX6] (X = Br, Cl) in pyridine with (TBA)BH4 and separation by chromatography on Al2O3. Apart from the monopyridine complexes only the trans and mer isomers are formed from the bis-and tris-pyridine compounds. The X-ray structure determinations of the isotypic neutral complexes mer- [ReX3(Py)3] (monoclinic, space group P 21/n, Z = 4; for X = Cl: a = 9,1120(8), b = 12,5156(14), c = 15,6100(13) Å, β = 91,385(7)°; for X = Br: a = 9,152(5), b = 12,852(13), c = 15,669(2) Å, β = 90,43(2)°) reveal, due to the stronger trans influence of pyridine compared with Cl and Br, that the Re? X distances in asymmetric Py? Re? X3 axes with ReCl3 = 2,397 Å and ReBr3 = 2,534 Å are elongated by 1,3 and 1% in comparison with symmetric X1? Re? X2 axes with ReCl1 = ReCl2 = 2,367 Å and ReBr1 = 2,513 and ReBr2 = 2,506 Å, respectively. The Re? N bond lengths are roughly equal with 2,12 Å. Trans-(TBA)[ReBr4(Py)2] crystallizes triclinic, space group P1 , a = 9,2048(12), b = 12,0792(11), c = 15,525(2) Å, α = 95,239(10), β = 94,193(11), γ = 106,153(9)°, Z = 2. The unit cell contains two independent but very similar complex anions with approximate D2h(mmm) point symmetry.  相似文献   

16.
Contributions on the Thermal Behaviour of Anhydrous Phosphates. IX. Synthesis and Crystal Structure of Cr6(P2O7)4. A Pyrophosphate Containing Di- and Trivalent Chromium Cr6(P2O7)4 (Cr22+Cr43+(P2O7)4) can be obtained reducing CrPO4 by phosphorus (950°C, 48 h, 100 mg iodine as mineralizer). By means of chemical transport reactions (transport agent iodine; 1050 → 950°C) the compound has been separated from its neighbour phases (Cr2P2O7, CrP3O9) and crystallized (greenish, transparent crystals; edge length up to 0.3 mm). The crystal structure of Cr6(P2O7)4 (Spcgrp.: P-1; z = 1; a = 4.7128(8) Å, b = 12.667(3) Å, c = 7.843(2) Å, α = 89.65(2)°, β = 92.02(2)°, γ = 90.37(2) has been solved and refined from single crystal data (2713 unique reflections, 194 parameter, R = 0.035). Cr2+ is surrounded by six oxygen atoms which occupy the corners of an elongated octahedron (4 × dCr? O ≈? 2.04 Å; 2 × dCr? O ≈? 2.62 Å). The Cr3+ ions are also coordinated octahedraly (1.930 Å ≤ dCr? O ≤ 2.061 Å). The crystallographically independent pyrophosphate groups show nearly eclipsed conformation. The bridging angles (P? O? P) are 136.5° and 138.9° respectively.  相似文献   

17.
Indium(III) chloride forms in water with potassium 1,2‐dithiooxalate (dto) and potassium 1,2‐dithiosquarate (dtsq) stable coordination compounds. Due to the higher bridging ability of the 1,2‐dithiooxalate ligand in all cases only thiooxalate bridged binuclear complexes were found. From 1,2‐dithioquadratate with an identical donor atom set mononuclear trischelates could be isolated. Five crystalline complexes, (BzlMe3N)4[(dto)2In(dto)In(dto)2] ( 1 ), (BzlPh3P)4[(dto)2In(dto)In(dto)2] ( 2 ), (BzlMe3N)3[In(dtsq)3] ( 3 ), (Bu4N)3[In(dtsq)3] ( 4 ) and (Ph4P)[In(dtsq)2(DMF)2] ( 5 ), have been isolated and characterized by X‐ray analyses. Due to the type of the complex and the cations involved these compounds crystallize in different space groups with the following parameters: 1 , monoclinic in P21/c with a = 14.4035(5) Å, b = 10.8141(5) Å, c = 23.3698(9) Å, β = 124.664(2)°, and Z = 2; 2 , triclinic in P with a = 11.3872(7) Å, b = 13.6669(9) Å, c = 17.4296(10) Å, α = 88.883(5)°, β = 96.763(1)°, γ = 74.587(5)°, and Z = 1; 3 , hexagonal in R3 with a = 20.6501(16) Å, b = 20.6501(16) Å, c = 19.0706(13) Å and Z = 6; 4 , monoclinic in P21/c with a = 22.7650(15) Å, b = 20.4656(10) Å, c = 14.4770(9) Å, β = 101.095(5)°, and Z = 4; 5 , triclinic in P with a = 9.2227(6) Å, b = 15.3876(9) Å, c = 15.5298(9) Å, α = 110.526(1)°, β = 100.138(1)°, γ = 101.003(1)°, and Z = 2.  相似文献   

18.
Syntheses, Crystal Structures, and Properties of Ln3AuO6 (Ln = Sm, Eu, Gd) The title compounds have been prepared from amorphous Au2O3 · x H2O (x = 1–3) and Ln2O3 (Ln = Nd, Sm, Eu) via solid state reaction under elevated oxygen pressure adding KOH as mineralizing agent. They crystallize in a new structure type (triclinic, P1, Z = 1, Sm3AuO6: a = 3.7272(2) Å, b = 5.6311(2) Å, c = 7.0734(3) Å, α = 90.32(2)°, β = 103.983(3)°, γ = 90.822(2)°, 125 powder intensities, Rp = 2.57%, Eu3AuO6: a = 3.7012(2) Å, b = 5.6134(2) Å, c = 7.0652(4) Å, α = 90.838(3)°, β = 102.956(3)°, γ = 90.909(2)°, 122 powder intensities, Rp = 3.16%, Gd3AuO6: a = 3.6720(2) Å, b = 5.5977(2) Å, c = 7.0636(2) Å, α = 90.509(2)°, β = 102.889(3)°, γ = 91.068(2)°, 3424 reflections, R1 = 12.90%). The crystal structure was solved and refined from single crystal data of Gd3AuO6. The structures of Sm3AuO6 and Eu3AuO6 were refined from powder diffraction data. The isolated square planar AuO4 units are stacked along the a‐axis and are linked by LnO6‐ and LnO6+1‐polyhedra. One of the oxygen atoms is exclusively coordinated by trivalent lanthanides, in tetrahedral geometry. The lanthanoid aurates decompose between 700 and 900 °C into Ln2O3, Au and O2. The magnetic moments μeff(Gd3AuO6) = 7.9 μB and, at 20 °C respectively, μeff(Sm3AuO6) = 1.55 μB as well as μeff(Eu3AuO6) = 3.5 μB confirm that the lanthanides are trivalent. The UV/VIS absorption spectra can be interpreted at assuming free ions.  相似文献   

19.
[iPr2P]2P? SiMe3 and [iPr2P]2PLi – Synthesis and Reactions Structure of [iPr2P]2P? P[PiPr2]2 [iPr2P]2P? SiMe3 1 and [iPr2P]2PLi 2 were prepared to investigate the influence of the bulky alkyl groups on formation and properties of the ylides R2P? P?P(X)R2 (R = iPr, tBu; X = Br, Me) in reactions of 1 with CBr4 and of 2 with 1,2-dibromoethane or MeCl, resp. Compared to the iPr groups the tBu groups favour the formation of ylides. With CBr4 1 forms iPr2P? P?P(Br)iPr2 5 just as a minor product which decomposes already below ?30°C. With 1,2-dibromoethane 2 yields only traces of 5 but [iPr2P]P? P[P(iPr)2]2 7 as main product. With MeCl 2 gives iPrP? P?P(Me)iPr2 9 and [iPr2P]2PMe 10 in a molar ratio of 1:1. 9 is considerably more stable than 5. 7 crystallizes triclinic in the space group P1 (No. 2) with a = 10.813 Å, b = 11.967 Å, c = 15.362 Å, α = 67.90°, β = 71.36°, γ = 64.11° and two formula units in the unit cell.  相似文献   

20.
The reaction of tris(bis(trimethylsilyl)amido)lanthanide(III) (Ln(btmsa)3) with two equiv. of cyclohexylisocyanide gives good yields of complexes of composition Ln(btmsa)3(CNC6H11)2 (Ln = Y( 1 ), La( 2 ), Ce( 3 ), Pr( 4 ), Nd( 5 ), Sm( 6 ), Eu( 7 ), Tb( 8 ), Dy( 9 ), Ho( 10 ), Tm( 11 ) and Yb( 12 )). Complex 5 crystallizes in the monoclinic space group C2/c with a = 25.689(8) Å, b = 12.165(2) Å, c = 17.895(15) Å, β = 122.47 (2)°, V = 4718.07 Å3, Z = 4 and R = 0.0342. The structure of compound 5 shows the five‐coordinate Nd3+ ion in a nearly exact trigonal bipyramidal environment with two CNC6H11 molecules in the axial and the three btmsa ligands in the equatorial positions. The linear dichroism spectrum of a single crystal of complex 5 was measured at room temperature, and the absorption spectrum of powdered material at low temperatures. From the spectra obtained a truncated crystal field (CF) splitting pattern is derived, and simulated by fitting the parameters of a phenomenological Hamiltonian. For 80 assignments a reduced r.m.s. deviation of 20.7 cm—1 is achieved. Making use of the calculated wavefunctions and eigenvalues the experimentally determined temperature dependence of μ2eff could be reproduced by adopting an orbital reduction factor k = 0.991, and on the basis of the CF parameters used the experimentally oriented non‐relativistic molecular orbital scheme of compound 5 is set up.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号