首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Energy differences, ΔXS‐t (X = E, H and G) (ΔXS‐t = X(singlet)‐X(triplet)) between singlet (s) and triplet (t) states are calculated at B3LYP/6‐311++G (3df,2p). The DFT calculations show that the triplet state of C4H4C is a ground state with planar conformer respect to its corresponding nonplanar singlet state. Both singlet and triplet states of C4H4M (M = Si, Ge, Sn and Pb) have a planar conformer with the singlet ground state. Four isodesmic reactions are presented for determining the stability energies, SE. NICS calculations are carried out for C4H4M to determine the aromatic character.  相似文献   

2.
We have functions expressed as antisymmetrized products of strongly orthogonal geminals have been evaluated for some three membered ring molecules. GF results are compared with previously computed SCF-MO results, obtained employing the same atomic basis. Transferability features of bonds and inner shells are shown.  相似文献   

3.
4.
Study of n-butane pyrolysis at high temperature in a flow system allows measurement of the sum of the rate constants of the initiation reactions and of the Arrhenius parameters of the reactions Established data for k1/k2 allow estimation of k1 for 951°K and this, with recent thermochemical data, yields the result log k?1 (l.mole s?1) = 8.5, in remarkable agreement with a recent measurement [20] but over si×ty times smaller than conventional assumption. The product k3k4 (l.2mole?2s?2) is found to be associated with the Arrhenius parameters log (A3A4) = 21.90 ± 0.6 and (E3 + E4) = 38.3 ± 2.7 kcal/mole. These values are much higher than would be e×pected on the basis of low temperature estimates. Independent evaluation gives log A4 = 10.5 ± 0.4 (l.mole?1s?1) and E4 = 20.1 ± 1.7 kcal/mole, hence log A3 = 11.4 ± 0.8 (l.mole?1s?1) and E3 = 18.2 ± 3.2 kcal/mole. These values are shown to be entirely consistent with a wide range of results from pyrolytic studies, and it is argued that they further confirm the view that Arrhenius plots for alkyl radical–alkane metathetical reactions are strongly curved, in part due to tunneling and, appreciably, to other as yet unidentified effects. Since there is published evidence that metathetical reactions involving hydrogen atoms show even greater curvature, it is suggested that this may be a characteristic of many metathetical reactions.  相似文献   

5.
6.
Accurate isomeric energy differences and standard enthalpies of formation for disputed intermediates in soot formation, C(4)H(3) and C(4)H(5), have been determined through systematic extrapolations of ab initio energies. Electron correlation has been included through second-order Z-averaged perturbation theory (ZAPT2), and spin-restricted, open-shell coupled-cluster methods through triple excitations [ROCCSD, ROCCSD(T), and ROCCSDT] utilizing the correlation-consistent hierarchy of basis sets, cc-pVXZ (X = D, T, Q, 5, and 6), followed by extrapolations to the complete basis set limit via the focal point method of Allen and co-workers. Reference geometries were fully optimized at the ROCCSD(T) level with a TZ(2d1f,2p1d) basis set. Our analysis finds that the resonance-stabilized i-C(4)H(3) and i-C(4)H(5) isomers lie 11.8 and 10.7 kcal mol(-1) below E-n-C(4)H(3) and E-n-C(4)H(5), respectively, several kcal mol(-1) (more, less) than reported in recent (diffusion Monte Carlo, B3LYP density-functional) studies. Moreover, in these systems Gaussian-3 (G3) theory suffers from large spin contamination in electronic wave functions, poor reference geometries, and anomalous vibrational frequencies, but fortuitous cancellation of these sizable errors leads to isomerization energies apparently accurate to 1 kcal mol(-1). Using focal-point extrapolations for isodesmic reactions, we determine the enthalpies of formation (delta(f)H(0) (composite function)) for i-C(4)H(3), Z-n-C(4)H(3), E-n-C(4)H(3), i-C(4)H(5), Z-n-C(4)H(5), and E-n-C(4)H(5) to be 119.0, 130.8, 130.8, 78.4, 89.7, and 89.1 kcal mol(-1), respectively. These definitive values remove any remaining uncertainty surrounding the thermochemistry of these isomers in combustion models, allowing for better assessment of whether even-carbon pathways contribute to soot formation.  相似文献   

7.
8.
9.
10.
Quantitative identification of isomers of hydrocarbon radicals in flames is critical to understanding soot formation. Isomers of C4H3 and C4H5 in flames fueled by allene, propyne, cyclopentene, or benzene are identified by comparison of the observed photoionization efficiencies with theoretical simulations based on calculated ionization energies and Franck-Condon factors. The experiments combine molecular-beam mass spectrometry (MBMS) with photoionization by tunable vacuum-ultraviolet synchrotron radiation. The theoretical simulations employ the rovibrational properties obtained with B3LYP/6-311++G(d,p) density functional theory and electronic energies obtained from QCISD(T) ab initio calculations extrapolated to the complete basis set limit. For C4H3, the comparisons reveal the presence of the resonantly stabilized CH2CCCH isomer (i-C4H3). For C4H5, contributions from the CH2CHCCH2 (i-C4H5) and some combination of the CH3CCCH2 and CH3CHCCH isomers are evident. Quantitative concentration estimates for these species are made for allene, cyclopentene, and benzene flames. Because of low Franck-Condon factors, sensitivity to n-isomers of both C4H3 and C4H5 is limited. Adiabatic ionization energies, as obtained from fits of the theoretical predictions to the experimental photoionization efficiency curves, are within the error bars of the QCISD(T) calculations. For i-C4H3 and i-C4H5, these fitted adiabatic ionization energies are (8.06 +/- 0.05) eV and (7.60 +/- 0.05) eV, respectively. The good agreement between the fitted and theoretical ionization thresholds suggests that the corresponding theoretically predicted radical heats of formation (119.1, 76.3, 78.7, and 79.1 kcal/mol at 0 K for i-C4H3, i-C4H5, CH3CCCH2, and CH3CHCCH, respectively) are also quite accurate.  相似文献   

11.
The kinetics and H atom channel yield at both 298 and 195 K have been determined for reactions of CN radicals with C2H2 (1.00+/-0.21, 0.97+/-0.20), C2H4 (0.96+/-0.032, 1.04+/-0.042), C3H6 (pressure dependent), iso-C4H8 (pressure dependent), and trans-2-C4H8 (0.039+/-0.019, 0.029+/-0.047) where the first figure in each bracket is the H atom yield at 298 K and the second is that at 195 K. The kinetics of all reactions were studied by monitoring both CN decay and H atom growth by laser-induced fluorescence at 357.7 and 121.6 nm, respectively. The results are in good agreement with previous studies where available. The rate coefficients for the reaction of CN with trans-2-butene and iso-butene have been measured at 298 and 195 K for the first time, and the rate coefficients are as follows: k298K=(2.93+/-0.23)x10(-10) cm3 molecule(-1) s(-1), k195K=(3.58+/-0.43)x10(-10) cm3 molecule(-1) s(-1) and k298K=(3.17+/-0.10)x10(-10) cm3 molecule(-1) s(-1), k195K=(4.32+/-0.35)x10(-10) cm3 molecule(-1) s(-1), respectively, where the errors represent a combination of statistical uncertainty (2sigma) and an estimate of possible systematic errors. A potential energy surface for the CN+C3H6 reaction has been constructed using G3X//UB3LYP electronic structure calculations identifying a number of reaction channels leading to either H, CH3, or HCN elimination following the formation of initial addition complexes. Results from the potential energy surface calculations have been used to run master equation calculations with the ratio of primary:secondary addition, the average amount of downward energy transferred in a collision DeltaEd, and the difference in barrier heights between H atom elimination and an H atom 1, 2 migration as variable parameters. Excellent agreement is obtained with the experimental 298 K H atom yields with the following parameter values: secondary addition complex formation equal to 80%, DeltaEd=145 cm(-1), and the barrier height for H atom elimination set 5 kJ mol(-1) lower than the barrier for migration. Finally, very low temperature master equation simulations using the best fit parameters have been carried out in an increased precision environment utilizing quad-double and double-double arithmetic to predict H and CH3 yields for the CN+C3H6 reaction at temperatures and pressures relevant to Titan. The H and CH3 yields predicted by the master equation have been parametrized in a simple equation for use in modeling.  相似文献   

12.
13.
The non-empirical generalized Kirkwood, Unsöld, and the single-Δ Unsöld methods (with double-zeta quality SCF wave-functions) are used to calculate isotropic dispersion (and induction) energy coefficients C2n, with n ? 5, for interactions involving ground state CH4, C2H6, C3H8, n-C4H10 and cyclo-C3H6. Results are also given for the related multipole polarizabilities αl, multipole sums S1/(0) and S1(?1) which are evaluated using sum rules, and the permanent multipole moments. for l = 1 (dipole) to l = 3 (octupole). Estimates of the reliability of the non-empirical methods, for the type of molecules considered, are obtained by a comparison with accurate literature values of α1S1(?1) and C6. This, and the asymptotic properties of the multipolar expansion of the dispersion energy, the use to discuss recommended representation for the isotropic long range interaction energies through R?10 where R is the intermolecular separation.  相似文献   

14.
15.
A model complex optical potential (composed of static, exchange, polarization and absorption terms) is employed to calculate the total (elastic and inelastic) electron-atom scattering cross sections from the corresponding atomic wave function at the Hartree-Fock level. The total cross sections (TCS) for electron scattering by their corresponding molecules (C2H2, C2H4, C2H6, C3H6, C3H8 and C4H8) are firstly obtained by the use of the additivity rule over an incident energy range of 10–1000 eV. The qualitative molecular results are compared with experimental data and other calculations wherever available, good agreement is obtained in intermediate-and high-energy region.  相似文献   

16.
C2H4CnH2n     
镍(Ni)基催化剂在低碳烯烃聚合领域具有重要的地位,也是该领域研究的热点.自Johnson等报道(J.Am.Chem.Soc.,1995, 117, 6414–6415)二亚胺配体络合的Ni(II)催化剂可有效降低烯烃聚合度,降低产物中非线性烯烃的选择性,甚至可以生成α-烯烃以来,掀起了Ni基催化剂在烯烃聚合领域的研究热潮.从均相到负载型多相Ni基催化剂,从载体类型到配体性质,从Ni纳米粒子的粒径调控到金属表面价态,关于Ni活性中心的研究工作一直存在争论.本课题组之前研究结果表明,曾明确了无定形硅铝(ASA)载体负载的Ni催化剂,经惰性气氛(N2)预处理得到的一价Ni是烯烃齐聚反应的主要活性中心(J.Chem. Soc. Chem. Commun., 1991, 126–127).本文进一步深入研究了不同Al2O3含量的ASA载体上Ni活性位点的结构及其在乙烯齐聚反应中的活性.27AlNMR结果表明,催化剂中的铝存在三种配位方式,分别为AlⅣ、AlⅤ和AlⅥ,其中AlⅣ含量随Al2O3含量的增加而增加.载体中铝配位方式的不同,导致其表面金属负载的金属Ni活性位点所处的结构亦不同.原位FTIR-CO和H2-TPR实验结果表明,催化剂表面存在两种不同结构分布的Ni位点,分别是接枝在弱酸性硅醇上的Ni2+阳离子和Si-(OH)-Al桥式羟基离子交换位置的Ni2+阳离子.多数研究者认为,位于离子交换位置处孤立的Ni阳离子是反应的活性中心.然而,近期有研究者提出负载在酸性硅烷醇表面孤立的Ni2+阳离子为反应的活性中心物质.本文研究发现,随着Al2O3负载量的降低,处于离子交换位置处的Ni2+离子含量逐渐减少,而处于硅醇缺陷位点处的Ni2+离子含量则逐渐增多.原位FTIR-CO分析结果表明,处于硅醇缺陷位点处的Ni2+离子物种在惰性气氛中更易于转化为活性中心Ni+.相应的催化反应结果表明,相比于离子交换位置的Ni2+物种,具有与硅醇缺陷位点相连的Ni2+离子结构更有利于表现出更高的乙烯齐聚化活性.由此可知,处于硅醇缺陷位点的Ni2+物种是乙烯齐聚反应的活性中心的前驱体.本文进一步研究了硅醇缺陷位点处的Ni2+离子物种更易于转化为活性中心Ni+的原因.H2-TPR结果表明,相比于离子交换位置的Ni2+物种,处于硅醇缺陷位点的Ni2+物种与载体之间的相互作用力更弱.C2H4-TPD结果进一步表明,具有这种相对较弱的金属载体间作用力结构的催化剂对反应物C2H4分子的吸附作用力相对更强,吸附量也相对增多,因此其乙烯齐聚的催化性能更优.本研究结果对理解活性中心结构和合理设计催化剂提供参考.  相似文献   

17.
Ionization efficiencies of 14 organic compounds have been measured in the wavelength region from 105 to 134nm using an ionization chamber. The compounds examined are cyclopropane, propylene, l-butene, isobutene, cis-and trans-2-butenes, cyclohexane, 1-hexane, tetramethylethylene, ethyl alcohol, dimethyl ether, n-, and iso-propyl alcohol, and ethyl methyl ether. The ionization efficiencies of cyclopropane and cyclohexane monotonically increase with increasing photon energy, but those for the others show a peak or a shoulder in the wavelength region of the present work.  相似文献   

18.
The kinetics of depletion of ground state Ti(a3F) and electronically excited state Ti(a5F) upon interactions with CH4, C2H2, C2H4, and C2H6 are studied in a fast-flow reactor at a He pressure of 0.70 Torr. No depletion of ground state Ti(a3F) was observed upon interaction with all hydrocarbons studied here. Two alkanes, CH4 and C2H6, were also quite inert for depletion of the excited state Ti(a5F), On the other hand, C2H2 and C2H4 deplete the excited state Ti(a5F) very efficiently. Rate constants were determined to be (266 ± 86) and (476 ± 88) × 10?12 cm3s?1 for Ti(a5F) + C2H4 and Ti(a5F) + C2H2, respectively. These large rate constants compared with the ground state Ti were explained by an electron donor-acceptor interaction model that works in the interaction between C2H4 or C2H2 and the excited state with unfilled 4s orbital.  相似文献   

19.
A new diffusion Monte Carlo study is performed on the isomers of C4H3 and C4H5 emulating the methodology of a previous study (Int. J. Chem. Kinet. 2001, 33, 808). Using the same trial wave function form of the previous study, substantially different isomerization energies were found owing to the use of larger walker populations in the present work. The energy differences between the E and i isomers of C4H3 were found to be 10.5 +/- 0.5 kcal/mol and for C4H5, 9.7 +/- 0.6 kcal/mol. These results are in reasonable accord with recent MRCI and CCSD(T) findings.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号