首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The finite element method is used to find the elastic strain (and thus the stress) for given velocity fields of the Leonov model fluid. With a simple linearization technique and the Galerkin formulation, the quasi-linear coupled first-order hyperbolic differential equations together with a non-linear equality constraint are solved over the entire domain based on a weighted residual scheme. The proposed numerical scheme has yielded efficient and accurate convective integrations for both the planar channel and the diverging radial flows for the Leonov model fluid. Only the strain in the inflow plane is required to be prescribed as the boundary conditions. In application, it can be conveniently incorporated in an existing finite element algorithm to simulate the Leonov viscoelastic fluid flow with more complex geometry in which the velocity field is not known a priori and an iterative procedure is needed.  相似文献   

2.
Finite element modeling of planar 4:1 contraction flow (isothermal incompressible and creeping) around a sharp entrance corner is performed for favored differential constitutive equations such as the Maxwell, Leonov, Giesekus, FENE-P, Larson, White-Metzner models and the Phan Thien-Tanner model of exponential and linear types. We have implemented the discrete elastic viscous stress splitting and streamline upwinding algorithms in the basic computational scheme in order to augment stability at high flow rate. For each constitutive model, we have obtained the upper limit of the Deborah number under which numerical convergence is guaranteed. All the computational results are analyzed according to consequences of mathematical analyses for constitutive equations from the viewpoint of stability. It is verified that in general the constitutive equations proven globally stable yield convergent numerical solutions for higher Deborah number flows. Therefore one can get solutions for relatively high Deborah number flows when the Leonov, the Phan Thien-Tanner, or the Giesekus constitutive equation is employed as the viscoelastic field equation. The close relationship of numerical convergence with mathematical stability of the model equations is also clearly demonstrated.  相似文献   

3.
The basic thermodynamic ideas from rubber-elasticity theory which Leonov employed to derive his constitutive model are herein summarized. Predictions of the single-mode version are presented for homogeneous elongational flows including stress growth following start-up of steady flow, stress decay following sudden stretching and following cessation of steady flow, elastic recovery following cessation of steady flow, energy storage in steady-state flow, and the velocity profile in constantforce spinning. Using parameters of the multiple-mode version which fit the linearviscoelastic data, the Leonov-model predictions of elongational stress growth during, and elastic recovery following, steady elongation are calculated numerically and compared to the experimental results for Melt I and to the Wagner model. It is found that the Leonov model, as originally formulated, agrees qualitatively with the data, but not quantitatively; the Wagner model gives quantitative agreement, but requires much nonlinear data with which to fit model parameters. Quantitative agreement can be obtained with the Leonov model, if the nonequilibrium potential which relates recoverable strain to strain rate is adjusted empirically. This can most simply be done by making each relaxation time dependent upon the recoverable strain. The Leonov model, unlike the Wagner model, is derived from an entropic constitutive equation, which is advantageous for calculating stored elastic energy or viscous dissipation. The Leonov model also has an appealingly simple differential form, similar to the upper-convected Maxwell model, which, in numerical calculations, may be an important advantage over the integral Wagner model.  相似文献   

4.
This paper describes the deformation of an elastic pipe submitted to gravity and to an internal fluid flow. The pipe is clamped horizontally at one end and free at the other end. As the fluid velocity increases, the shape changes from an elastic beam deflected by its own weight towards an horizontal position. The shape of the pipe is characterized experimentally and is compared with a theoretical model based on the Euler–Bernoulli approximation and the conservation of the fluid momentum. We study how the determination of the pipe deformation provides an estimation of the conveyed fluid flow. Finally, the vertical force produced by the conveyed fluid to lift off a mass is deduced.  相似文献   

5.
In the present paper an unsteady thermal flow of non-Newtonian fluid is investigated which is of the fiow into axisymmetric mould cavity. In the second part an unsteady thermal flow of upper-convected Maxwell fluid is studied, For the flow into mould cavity the constitutive equation of power-law fluid is used as a rheological model of polymer fluid. The apparent viscosity is considered as a function of shear rate and temperature. A characteristic viscosity is introduced in order to avoid the nonlinearity due to the temperature dependence of the apparent viscosity. As the viscosity of the fluid is relatively high the flow of the thermal fluid can be considered as a flow of fully developed velocity field. However, the temperature field of the fluid fiow is considered as an unsteady one. The governing equations are constitutive equation, momentum equation of steady flow and energy conservation equation of non-steady form. The present system of equations has been solved numerically by the splitting differen  相似文献   

6.
In the present paper the unsteady Couette flow and heat transfer of a dusty conducting fluid between two parallel plates with temperature dependent viscosity and thermal conductivity are studied. A constant pressure gradient and an external uniform magnetic field are applied. The governing coupled momentum and energy equations are solved numerically using finite differences. The effect of the variable viscosity and thermal conductivity of the fluid and the uniform magnetic field on the velocity and temperature fields for both the fluid and dust particles is discussed.  相似文献   

7.
黏弹流体流动的数值模拟研究进展   总被引:5,自引:1,他引:4  
综述了黏弹流体流动数值模拟的研究进展,突出介绍近十年来有限元法在黏弹流体流动数值模拟研究中取得的成果,通过动量方程的适当变形和本构方程离散权函数的合理选择,可以显著增强数值计算的稳定性。得到较高Weissenberg数下的解,同时文中对黏弹流体流动数值模拟中本构方程的应用、非等温情况和三维空间下的研究进行了介绍。  相似文献   

8.
Heat transfer to non-newtonian fluids flowing laminarly through rectangular ducts is examined. The conservation equations of mass, momentum, and energy are solved numerically with the aid of a finite volume technique. The viscoelastic behavior of the fluid is represented by the Criminale-Ericksen-Filbey (CEF) constitutive equation. Secondary flows occur due to the elastic behavior of the fluid, and, consequently, heat transfer is strongly enhanced. It is observed that shear thinning yields negligible heat transfer enhancement effect, when compared with the secondary flow effect. Maximum heat transfer is shown to occur for some combinations of parameters. Thus, there are optimal combinations of aspect ratio and Reynolds numbers, which depend on the fluid's mechanical behavior. This result can be usefully explored in thermal designs of certain industrial processes.  相似文献   

9.
The effects of non-Newtonian behaviour of a fluid and unsteadiness on flow in a channel with non-uniform cross-section have been investigated. The rheological behaviour of the fluid is assumed to be described by the constitutive equation of a viscoelastic fluid obeying the Oldroyd-B model. The finite element method is used to analyse the flow. The novel features of the present method are the adoption of the velocity correction technique for the momentum equations and of the two-step explicit scheme for the extra stress equations. This approach makes the computational scheme simple in algorithmic structure, which therefore implies that the present technique is capable of handling large-scale problems. The scheme is completed by the introduction of balancing tensor diffusivity (wherever necessary) in the momentum equations. It is important to mention that the proper boundary condition for pressure (at the outlet) has been developed to solve the pressure Poisson equation, and then the results for velocity, pressure and extra stress fields have been computed for different values of the Weissenberg number, viscosity due to elasticity, etc. Finally, it is pertinent to point out that the present numerical scheme, along with the proper boundary condition for pressure developed here, demonstrates its versatility and suitability for analysing the unsteady flow of viscoelastic fluid through a channel with non-uniform cross-section.  相似文献   

10.
The paper demonstrates that experimental data (Simmons, 1968) for orthogonal superposition of small amplitude oscillations on steady shear flow, coincide well enough with the theoretical predictions (Leonov et al., 1976) of simple multi-modal version of Leonov model (Leonov, 1976, 1987; Leonov et al., 1976). It was also shown that the recent theoretical calculations (Wong and Isayev, 1989) of the problem, which used the same Leonov model, are wrong.  相似文献   

11.
Summary Oscillatory flow of a micropolar fluid in an annular tube is investigated. The outer wall of the tube is taken to be elastic and the variation in the diameter of the elastic wall due to pulsatile nature of pressure gradient is assumed to be small. The wall motion is governed by a tube law. The nonlinear equations governing the fluid flow and the tube law are solved using perturbation analysis. The steady-streaming phenomenon due to the interaction of convected inertia with viscous effects is studied. The analysis, is carried out for zero mean flow rate. It presents the effects of the elastic nature of the wall combined with micropolar fluid parameters on the mean pressure gradient and wall shear stress for different catheter sizes and frequency parameters. It is found that the effect of micropolarity is of considerable importance for small steady-streaming Reynolds number. Also, it is observed that the relationship between mean pressure gradient and the flow rate depends on the amplitude of the diameter variation, flow rate waveforms and the phase difference between them.  相似文献   

12.
A simulation of planar 2D flow of a viscoelastic fluid employing the Leonov constitutive equation has been presented. Triangular finite elements with lower-order interpolations have been employed for velocity and pressure as well as the extra stress tensor arising from the constitutive equation. A generalized Lesaint–Raviart method has been used for an upwind discretization of the material derivative of the extra stress tensor in the constitutive equation. The upwind scheme has been further strengthened in our code by also introducing a non-consistent streamline upwind Petrov–Galerkin method to modify the weighting function of the material derivative term in the variational form of the constitutive equation. A variational equation for configurational incompressibility of the Leonov model has also been satisfied explicitly. The corresponding software has been used to simulate planar 2D entrance flow for a 4:1 abrupt contraction up to a Deborah number of 670 (Weissenberg number of 6·71) for a rubber compound using a three-mode Leonov model. The predicted entrance loss is found to be in good agreement with experimental results from the literature. Corresponding comparisons for a commercial-grade polystyrene, however, indicate that the predicted entrance loss is low by a factor of about four, indicating a need for further investigation. © 1997 by John Wiley & Sons, Ltd.  相似文献   

13.
The turbulent flow of mildly elastic drag reducing fluids through a straight tube rotating around an axis perpendicular to its own is analysed using boundary layer approximations. The momentum integral approach is used and the governing equations have been solved numerically using the Runge-Kutta-Merson method. The influence of the Deborah number on the velocity distribution and the boundary layer thickness has been exemplified through the analysis. NCL Communication No. 3354.  相似文献   

14.
Fluid flow through a significantly compressed elastic tube occurs in a variety of physiological situations. Laboratory experiments investigating such flows through finite lengths of tube mounted between rigid supports have demonstrated that the system is one of great dynamical complexity, displaying a rich variety of self-excited oscillations. The physical mechanisms responsible for the onset of such oscillations are not yet fully understood, but simplified models indicate that energy loss by flow separation, variation in longitudinal wall tension and propagation of fluid elastic pressure waves may all be important. Direct numerical solution of the highly non-linear equations governing even the most simplified two-dimensional models aimed at capturing these basic features requires that both the flow field and the domain shape be determined as part of the solution, since neither is known a priori. To accomplish this, previous algorithms have decoupled the solid and fluid mechanics, solving for each separately and converging iteratively on a solution which satisfies both. This paper describes a finite element technique which solves the incompressible Navier-Stokes equatikons simultaneously with the elastic membrane equations on the flexible boundary. The elastic boundary position is parametized in terms of distances along spines in a manner similar to that which has been used successfully in studies of viscous free surface flows, but here the membrane curvature equation rather than the kinematic boundary condition of vanishing normal velocity is used to determine these diatances and the membrane tension varies with the shear stresses exerted on it by the fluid motions. Bothy the grid and the spine positions adjust in response to membrane deformation, and the coupled fluid and elastic equations are solved by a Newton-Raphson scheme which displays quadratic convergence down to low membrane tensions and extreme states of collapse. Solutions to the steady problem are discussed, along with an indication of how the time-dependent problem might be approached.  相似文献   

15.
A numerical scheme based on the Finite Element Method has been developed which uses a relaxation factor in the momentum equation with the stresses being evaluated via a streamwise integration procedure. A constitutive equation introduced by Leonov has been used to represent the rheological behavior of the fluid. The convergence of the scheme has been tested on a 2 : 1 abrupt contraction problem by successive mesh refinement for non-dimensional characteristic shear rates, of 5 and 50 for polyisobutylene Vistanex at 27 °C. The recirculation region is shown to increase in size with non-dimensional characteristic shear rate.Theoretical predictions have been compared with the experimental data which include birefringence and pressure loss measurements. In general, the comparisons have been reasonably good and demonstrates the usefulness of the present numerical scheme and the Leonov constitutive equation to describe real polymer flows.  相似文献   

16.
This paper examines the unsteady two‐dimensional flow of a second‐grade fluid between parallel disks in the presence of an applied magnetic field. The continuity and momentum equations governing the unsteady two‐dimensional flow of a second‐grade fluid are reduced to a single differential equation through similarity transformations. The resulting differential system is computed by a homotopy analysis method. Graphical results are discussed for both suction and blowing cases. In addition, the derived results are compared with the homotopy perturbation solution in a viscous fluid (Math. Probl. Eng., DOI: 10.1155/2009/603916 ). Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
    
This paper concentrates on the analysis of the thermal nonequilibrium effects during forced convection in a parallel-plate channel filled with a fluid saturated porous medium. The flow in a channel is described by the Brinkman-Forchheimer-extended Darcy equation and the thermal nonequilibrium effects are accounted for by utilizing the two energy equations model. Applying the perturbation technique, an analytical solution of the problem is obtained. It is established that the temperature difference between the fluid and solid phases for the steady fully developed flow is proportional to the ratio of the flow velocity to the mean velocity. This results in a local thermal equilibrium at the walls of the channel if the Brinkman term which allows for the no-slip boundary condition at the walls is included into the momentum equation.  相似文献   

18.
A magnetic hydrodynamic (MHD) mixed convective heat transfer problem of a second-grade viscoelastic fluid past a wedge with porous suction or injection has been studied. Governing equations include continuity equation, momentum equation and energy equation of the fluid. It has been analyzed by a combination of a series expansion method, the similarity transformation and a second-order accurate finite-difference method. Solutions of wedge flow on the wedge surface have been obtained by a generalized Falkner-Skan flow derivation. Some important parameters have been discussed by this study, which include the Prandtl number (Pr), the elastic number (E), the free convection parameter (G) and the magnetic parameter (M), the porous suction and injection parameter (C) and the wedge shape factor (β). Results indicated that elastic effect (E) in the flow could increase the local heat transfer coefficient and enhance the heat transfer of a wedge. In addition, similar to the results from Newtonian fluid flow and conduction analysis of a wedge, better heat transfer is obtained with a larger G and Pr.  相似文献   

19.
The extended Brinkman Darcy model for momentum equations and an energy equation is used to calculate the unsteady natural convection Couette flow of a viscous incompressible heat generating/absorbing fluid in a vertical channel(formed by two infinite vertical and parallel plates) filled with the fluid-saturated porous medium.The flow is triggered by the asymmetric heating and the accelerated motion of one of the bounding plates.The governing equations are simplified by the reasonable dimensionless parameters and solved analytically by the Laplace transform techniques to obtain the closed form solutions of the velocity and temperature profiles.Then,the skin friction and the rate of heat transfer are consequently derived.It is noticed that,at different sections within the vertical channel,the fluid flow and the temperature profiles increase with time,which are both higher near the moving plate.In particular,increasing the gap between the plates increases the velocity and the temperature of the fluid,however,reduces the skin friction and the rate of heat transfer.  相似文献   

20.
Governing equations for a two‐phase 3D helical pipe flow of a non‐Newtonian fluid with large particles are derived in an orthogonal helical coordinate system. The Lagrangian approach is utilized to model solid particle trajectories. The interaction between solid particles and the fluid that carries them is accounted for by a source term in the momentum equation for the fluid. The force‐coupling method (FCM), developed by M.R. Maxey and his group, is adopted; in this method the momentum source term is no longer a Dirac delta function but is spread on a numerical mesh by using a finite‐sized envelop with a spherical Gaussian distribution. The influence of inter‐particle and particle–wall collisions is also taken into account. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号