首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The high temperature vaporization pattern of Hg3Te2I2(s,l) shows four distinctly different regimes, similar to those of the HgTe vaporization. The most predominant species in the vapor phase in all four regimes is HgI2(g), followed by Hg(g) and, possibly, Te2I2(g). The width of the “homogeneity range” of Hg3Te2I2(s) was determined to be less than about 0.17 mole‐% HgI2. Applying the second‐law method to the vaporization of HgTe‐saturated Hg3Te2I2(s) at higher temperatures yields the heat and entropy of vaporization of 20.9 ± 2.3 (kcal/mole) and of 27.5 ± 2.8 (cal/mole K), respectively, with estimated total uncertainties of less than ± 5.8 (kcal/mole) and ± 7.6 (cal/mole K), at an average temperature of 722 K. With an estimated heat capacity function of Hg3Te2I2(s) and estimated thermodynamic values for HgI2‐saturated HgTe(s), the heat of formation and absolute entropy of Hg3Te2I2(s) are computed to be = ?49.7 ± 1.1 (kcal/mole) and = 97.3 ± 1.4 (cal/mole K), with estimated total uncertainties of ± 8.3 (kcal/mole) and ± 14.0 (cal/mole K). The combined results of this investigation provide valuable information for the crystal growth of this material from the vapor and molten phase.  相似文献   

2.
Light‐yellow single crystals of the mixed‐valent mercury‐rich basic nitrate Hg8O4(OH)(NO3)5 were obtained as a by‐product at 85 °C from a melt consisting of stoichiometric amounts of (HgI2)(NO3)2·2H2O and HgII(OH)(NO3). The title compound, represented by the more detailed formula HgI2(NO3)2·HgII(OH)(NO3)·HgII(NO3)2·4HgIIO, exhibits a new structure type (monoclinic, C2/c, Z = 4, a = 6.7708(7), b = 11.6692(11), c = 24.492(2) Å, β = 96.851(2)°, 2920 structure factors, 178 parameters, R1[F2 > 2σ(F2)] = 0.0316) and is made up of almost linear [O‐HgII‐O] and [O‐HgI‐HgI‐O] building blocks with typical HgII‐O distances around 2.06Å and a HgI‐O distance of 2.13Å. The Hg22+ dumbbell exhibits a characteristic Hg‐Hg distance of 2.5079(7) Å. The different types of mercury‐oxygen units form a complex three‐dimensional network exhibiting large cavities which are occupied by the nitrate groups. The NO3? anions show only weak interactions between the nitrate oxygen atoms and the mercury atoms which are at distances > 2.6Å from one another. One of the three crystallographically independent nitrate groups is disordered.  相似文献   

3.
Contributions on Crystal Structures and Thermal Behaviour of Anhydrous Phosphates. XXIII. Preparation, Crystal Structure, and Thermal Behaviour of the Mercury(I) Phosphates α-(Hg2)3(PO4)2, β-(Hg2)3(PO4)2, and (Hg2)2P2O7 Light-yellow single crystals of (Hg2)2P2O7 have been obtained via chemical vapour transport in a temperature gradient (500 °C → 450 °C, 23 d) using Hg2Cl2 as transport agent. Characteristic feature of the crystal structure (P2/n, Z = 2, a = 9,186(1), b = 4,902(1), c = 9,484(1) Å, β = 98,82(2)°, 1228 independent of 5004 reflections, R(F) = 0,066 for 61 variables, 7 atoms in the asymmetric unit) are Hg22+-units with d(Hg1–Hg1) = 2,508 Å and d(Hg2–Hg2) = 2,519 Å. The dumbbells Hg22+ are coordinated by oxygen, thus forming polyhedra [(Hg12)O4] and [(Hg22)O6]. These polyhedra share some oxygen atoms. In addition they are linked by the diphosphate anion P2O74– (ecliptic conformation; ∠(P,O,P) = 129°) to built up the 3-dimensional structure. Under hydrothermal conditions (T = 400 °C) orange single crystals of the mercury(I) orthophosphates α-(Hg2)3(PO4)2 and β-(Hg2)3(PO4)2 have been obtained from (Hg2)2P2O7 and H3PO4 (c = 1%). The crystal structures of both modifications have been refined from X-ray single crystal data [α-form (β-form): P21/c (P21/n), Z = 2 (2), a = 8,576(3) (7,869(3)), b = 4,956(1) (8,059(3)), c = 15,436(3) (9,217(4)) Å, β = 128,16(3) (108,76(4))°, 1218 (1602) independent reflections of 4339 (6358) reflections, R(F) = 0,039 (0,048) for 74 (74) variables, 8 (8) atoms in the asymmetric unit]. In the structure of α-(Hg2)3(PO4)2 three crystallographically independent mercury atoms, located in two independent dumbbells, are coordinated by three oxygen atoms each. Thus, [(Hg2)O6] dimers with a strongly distorted tetrahedral coordination of all mercury atoms are formed. Such dimers are present besides [(Hg2)O5]-polyhedra in the less dense crystal structure of β-(Hg2)3(PO4)2 (d(Hg–Hg) = 2,518 Å). The mercury(I) phosphates are thermally labile and disproportionate between 200 °C (β-(Hg2)3(PO4)2) and 480 °C (α-(Hg2)3(PO4)2) to elemental mercury and the corresponding mercury(II) phosphate.  相似文献   

4.
Structure and Properties of Double Halogenides of Substituted Ammonium and Mercury(II). VI. Crystal Structure of (CH3NH3)2HgBr4 and (CH3NH3)2HgI4 The compounds (CH3NH3)2HgBr4 and (CH3NH3)2HgI4 were prepared from stoichiometric mixtures of the methylammonium halogenides and the mercury(II) halogenides in methanol by evaporation. X-ray structure determination revealed for (CH3NH3)2HgBr4 monoclinic symmetry, space group P21/c and orthorhombic symmetry, space group Pbca for (CH3NH3)2HgI4. Both compounds are built from isolated, slightly deformed tetrahedra. The Hg? Br distances range from 2.586(3) Å to 2.598(2) Å, the Br? Hg? Br angles from 105.36(8)° to 112.26(8)°. The observed distances in the HgI4 tetrahedra are in the range 2.751(1) and 2.803(1) Å, the I? Hg? I angles between 106.25(3)° and 115.68(4)°. The tetrahedra are linked together by hydrogen bonds between the methylammonium group and the halogen atoms.  相似文献   

5.
From the enthalpy of solution of MoOBr3 in NaOH/H2O2 the enthalpy of formation ΔH°(MoOBr3,f,298) = ?109,5(±0,4) kcal/mol was derived. The sublimation of MoOBr3 is connected with simultaneous decomposition (see “Inhaltsübersicht”). From the temperature function of the saturated vapor pressure the values ΔH°(subl., MoOBr3, 298) = 36(±1,5) kcal/mol and ΔS°(subl., MoOBr3, 298) = 56(±3) cl are calculated.  相似文献   

6.
The temperature-composition phase diagram of the HgTe—HgI2 pseudobinary system was determined between 25 and 670°C using differential scanning calorimetry, differential thermal analysis, Debye-Scherrer powder X-ray diffraction techniques, and metallographic analysis methods. Solid solutions of HgTe and HgI2 with the cubic, zinc blende-type structure exist above 300°C, having a maximum solubility of 11.7±0.8 Mol-% HgI2 in HgTe at 501±5°C. The monoclinic intermediate phase Hg3Te2I2 is formed by a peritectic reaction upon cooling at 501±5°C, with the peritectic point at approximately 37±4 Mol-% HgI2. The previously unknown cubic phase Hg3TeI4 (a = 6.240±0.003 Å) is formed by a eutectoid reaction at 238±3°C and is stable up to 273±3°C, where it melts by a peritectic reaction with the peritectic point at approximately 79±3 Mol-% HgI2. Between Hg3TeI4 and HgI2 is a eutectic point at 82±3 Mol-% HgI2 and 250±3°C. The α to β transition of HgI2 at 133±3°C is independent of sample composition between 33.3 and 100 Mol-% HgI2.  相似文献   

7.
Synthesis and Structure of the Platinum(0) Compounds [(dipb)Pt]2(COD) and (dipb)3Pt2 and of the Cluster Hg6[Pt(dipb)]4 (dipb = (i-Pr)2P(CH2)4P(i-Pr)2) The reduction of (dipb)PtCl2 with Na/Hg yields (dipb)Pt as an intermediate which reacts with the amalgam to form the cluster Hg6[Pt(dipb)]4 ( 3 ) or decomposes to (dipb)3Pt2 ( 2 ) and Pt. In the presence of COD [(dipb)Pt]2(COD) ( 1 ) is obtained. 1 crystallizes monoclinicly in the space group P21/c with a = 1596.1(4), b = 996.5(2), c = 1550.4(3) pm, β = 113.65(2)°, Z = 2. In the dinuclear complex two (dipb)Pt units are bridged by a 1,2-η2-5,6-η2 bonded COD ligand. Whereby the C = C double bonds are lengthened to 145 pm. 2 forms triclinic crystals with the space group P1 and a = 1002.0(2), b = 1635.9(3), c = 868.2(2) pm, α = 94.70(2)°, β = 94.45(2)°, σ = 87.95(1)°, Z = 1. In 2 two (dipb)Pt moieties are connected by a μ-dipb ligand in a centrosymmetrical arrangement. 3 is monoclinic with the space group C2/c and a = 1273.8(3), b = 4869.2(6), c = 1660.2(3) pm, β = 95.16(2)°, Z = 4. The clusters Hg6[Pt(dipb)]4 have the symmetry C2. Central unit is a Hg6 octahedron of which four faces are occupied by Pt(dipb) groups. The bonding in the cluster is discussed on the basis of eight Pt? Hg two center bonds of 267.6 pm and two Pt? Hg? Pt three center bonds with Pt? Hg = 288.0 pm.  相似文献   

8.
The First Polyiodo Complex – Triethylsulfoniumtriiodomercurate(II)-tris(diiodine), (Et3S)[Hg2I6]1/2 · 3 I2 After Raman spectroscopic investigation of the system HgI2/Et3SIx, x = 3, 5, 7, triethylsulfoniumtriiodomercuratetris(diiodine), (Et3S)[Hg2I6]1/2 · 3 I2 was synthesized by reacting of HgI2 and liquid Et3SI7. The compound crystallizes at room temperature triclinically in the space group P1 with a = 879.4(7), b = 1 209.1(5), c = 1 291.5(5) pm, α = 96.16(3)°, β = 103.82(6)°, γ = 99.05(5)° and Z = 2. The crystal structure is composed of disordered Et3S+ cations, the centrosymmetric complex anion [HgI2/2I2]22? and three connecting iodine molecules I2.  相似文献   

9.
Thermical Decomposition and Sublimation of NiI2 In a membran manometer the thermical decomposition and the sublimation of NiI2 was measured and in ampuls the sublimation of NiI2 studied. From the total pressure and the sublimation pressure the enthalpy of formation ΔH°(f,NiI2,f,298) = ?20 ± 2 kcal/mole and ΔH°(f,NiI2,g,298) = +31.2 ± 5 kcal/mole was derived. The entropy dates are: S°(NiI2,f,298) = 35 ± 2 cl, S°(NiI2,g,298) = 80 ± 1 cl and S°(Ni2I4,g,298) = 128 ± 3 cl respectively. The Ni formed with NiI2 an eutectical system.  相似文献   

10.
The temperature-composition phase diagram of the HgTe? HgI2 system was determined from 0 to 45 Mol-% HgI2 between 25 and 670°C using Debye-Scherrer powder X-ray diffraction techniques and differential thermal analysis. Solid solutions of HgTe and HgI2 with the cubic, zinc blende-type structure exist above 300°C, having a maximum solubility of 11.7 ± 0.8 Mol-% HgI2 in HgTe at 501 ± 5°C. The known monoclinic compound Hg3Te2I2 is formed by a peritectic reaction upon cooling at 501 ± 5°C, with the peritectic point at approximately 37 ± 4 Mol-% HgI2.  相似文献   

11.
The temperature‐composition phase equilibria of the Hg0.8Cd0.2Te‐HgI2 system were investigated between about 100 and 800 °C using Debye‐Scherrer powder X‐ray diffraction techniques, differential thermal analysis, differential scanning calorimetry, and thermochemical and structural calculations. This system is a pseudobinary temperature‐ composition plane in the HgTe‐CdTe‐HgI2 pseudoternary phase diagram. Measurable solid solutions of HgI2 in Hg0.8Cd0.2Te with the cubic zinc blende‐type structure exist between about 290 and 700 °C, with a maximum solubility of 4.9 ± 0.3 mole‐% HgI2 at 363 ± 3 °C. Further addition of HgI2 to HgI2‐saturated Hg0.8Cd0.2Te yields the formation of CdI2, which reduces the mole fraction (x) of CdTe in the Hg1—xCdxTe host lattice. After sufficient HgI2 is added, the host lattice is depleted in CdTe and forms Hg3Te2I2 in addition to CdI2. Phase fields containing the ternary compound Hg3TeI4, which we first observed in the HgTe‐HgI2 system, also exist in the present system. Quaternary analogs of the known ternary compounds Hg3Te2I2 and Hg3TeI4, i.e., Hg3—yCdyTe2I2 and Hg3—yCdyTeI4, were not observed under present experimental conditions.  相似文献   

12.
Total Pressure Measurements and Gas Phase Composition over Re2O7, ReO3, and ReO2 The total pressures over Re2O7, ReO3, and ReO2 have been determined by means of a membrane pressure gauge. The sublimation pressure over Re2O7 will be measureable at a temperature above 225°C and amounts 230 Torr at the melting point (at 315°C). The values are . ReO3 decomposes at a temperature above 400°C according to with ΔH°r,T = 214.6 ± 2kJ/mol and ΔS°r,T = 263.2 ± 4J/K · mol. ReO3 is not detectable in the gaseous phase in measurable quantities. ReO2 decomposes at a temperature above 800°C according to with ΔH°r,T = 387,0 ± 8.4 kJ/mol and ΔS°r,T = 289.1 ± 12.5 J/K · mol.  相似文献   

13.
WOBr3 and WOBr2 were prepared by chemical transport reactions. From the solution enthalpy of WOBr3 in NaOH/H2O2 the formation enthalpy ΔH°(WOBr3,f,298) = ?113,2(±0,9) kcal/Mol was calculated. The thermal decomposition of WOBr3 proceeds primarly according to 2 WOBr3 = WOBr2 + WOBr4. The decomposition of WOBr2 may be described by the reaction 2 WOBr2 = WBr2 + WO2Br2. The interpretation of the decomposition equilibrium of WOBr3 gives the values ΔH°(WOBr2,f,298) = ?116,9(±5) kcal/Mol, and S°(WOBr3,f,298) = 46(±5) cl.  相似文献   

14.
Thermochemistry of Gaseous GeWO4 and GeW2O7 Mass spectrometric investigations with a Knudsen cell arrangement at temperatures between 1258 and 1383 K proved the existence of GeWO4 and GeW2O7 as component of the vaporphase over a mechanical mixture of GeO2 and WO2. Using the partial pressures heats of formation (2nd law calculation) and entropies (3rd law calculation) were computed; i. e. GeWO4: δH°1330 = ?149.8 kcal · mole?1, S°1330 = 129.9 cal K?1 mole?1, GeW2O7: δH°f,1330 = ?310.6 kcal mole?1, S°1330 = 190.0 cal K?1 mole?1. The standard heats of formation and entropies at 298 K, calculated with estimated Cp values are: GeWO4: δH°f,298 = ?181.6 kcal mole?1, S°298 = 85.0 cal K?1 mole?1; GeW2O7: δH°f,298 = ?365.8 kcal mole?1, S°298 = 112.1 cal K?1 mole?1. The thermochemical data of the GeWO4 and GeW2O7 molecules which also appear at chemical transport experiments [2] with GeO2 + WO2, are compared with known gaseous tungstates.  相似文献   

15.
The 31P{1H}-NMR characteristics of the complexes [HgX2( 1 )] and [HgX2-(PPh2Bz)2] (X = NO3, Cl, Br, I, SCN, CN) and the solid state structures of the complexes [HgCl2( 1 )] and [HgI2( 1 )] ( 1 = 2,11-bis (diphenylphosphinomethyl)benzo-[c]phenanthrene) have been determined. The 1J(199Hg, 31P) values increase in the order CN < I < SCN < Br < Cl < NO3. The two molecular structures show a distorted tetrahedral geometry about mercury. Pertinent bond lengths and bond angles from the X-ray analysis are as follows: Hg? P = 2.485(7) Å and 2.509 (8) Å, Hg? Cl = 2.525 (8) Å and 2.505 (10) Å, P? Hg? P = 125.6(3)°, Cl? Hg? Cl = 97.0(3)° for [HgCl2( 1 )] and Hg? P = 2.491 (10) Å and 2.500(11) Å, Hg? I = 2.858(5) Å and 2.832(3) Å, P? Hg? P = 146.0(4)°, I? Hg? I = 116.9(1)° for [HgI2( 1 )]. The equation, derived previously, relating 1J(199Hg, 31P) and the angles P? Hg? P and X? Hg? X is shown to be valid for 1 .  相似文献   

16.
Hg2(CH3SO3)2: Synthesis, Crystal Structure, Thermal Behavior, and Vibrational Spectroscopy Colorless single crystals of Hg2(CH3SO3)2 are formed in the reaction of HgO, Hg, and HSO3CH3. In the monoclinic compound (I2/a, Z = 4, a=883.2(2), b=854.0(2), c=1188.9(2) pm, β = 92.55(2)°, Rall=0.0445) the Hg22+ ion is coordinated by two monodentate CH3SO3 anions. Further contacts Hg‐O occur in the range from 262 to 276 pm and lead to a linkage of the [Hg2(CH3SO3)2] units. The thermal analysis shows that Hg2(CH3SO3)2 decomposes at 300° yielding elemental mercury. The mass numbers of the species evolved lead to the assumtion that SO3, SO2, CO2, CO and H2CO are formed during the reaction. In the IR and the Raman spectrum the typical vibrations of the CH3SO3 ion are observed, the Raman spectrum shows the Hg‐Hg stretching vibration at 177 cm—1 within the Hg22+ ion additionally.  相似文献   

17.
Investigations on the Barogram and Melting Diagram of the Systems BiI3? HgI2 and BiI3? I2 The barograms of the systems BiI3? HgI2 and BiI3? I2 are determined by total pressure measurements in a membrane manometer. The melting diagrams follow from DTA measurements and the barogram. Both systems are eutectic with eutectica at 1.5 mol% BiI3 and 110°C for BiI3? I2 and 9 mol% BiI3 and 243°C for BiI3? HgI2.  相似文献   

18.
Polysulfonyl Amines. XXXVII. Preparation of Mercury Dimesylamides. Crystal and Molecular Structures of Hg[N(SO2CH3)2]2, Hg[{N(SO2CH3)2}2(DMSO)2], and Hg[{N(SO2CH3)2}2(HMPA)] Hg[N(SO2CH3)2]2 ( 1 ) and Hg2[N(SO2CH3)2]2 ( 2 a ) are formed as colourless, sparingly soluble precipitates when solutions of Hg(NO3)2 or Hg2(NO3)2 in dilute nitric acid are added to an aqueous HN(SO2CH3)2 solution. By a similar reaction, Hg2[N(SO2C6H4 ? Cl? 4)2]2 is obtained. 1 forms isolable complexes of composition Hg[N(SO2CH3)2]2 · 2 L with L = dimethyl sulfoxide (complex 3 a ), acetonitrile, dimethyl formamide, pyridine or 1,10-phenanthroline and a (1/1) complex Hg[N(SO2CH3)2]2 · HMPA ( 4 ) with hexamethyl phosphoramide. Attempted complexation of 2 a with some of these ligands induced formation of Hg0 and the corresponding HgII complexes. Crystallographic data (at -95°C) are for 1: space group 141/a, a = 990.7(2), c = 2897.7(8) pm, V = 2.844 nm3, Z = 8, Dx = 2.545Mgm?3; for 4a: space group P1 , a = 767.8(2), b = 859.2(2), c = 925.2(2)pm α = 68.44(2), β = 86.68(2), γ = 76.24(2)°, V = 0.551nm3, Z = 1, Dx = 2.113 Mgm?3; for 4: space group P21/c, a = 1041.3(3), b = 1545.4(3), c = 1542.5(3) pm, β = 100.30(2)°, V = 2.474nm3, Z = 4, Dx = 1.944Mgm3. The three compounds form molecular crystals. The molecular structures contain a linear or approximately linear, covalent NHgN moiety; the Hg? N distances and N? Hg? N angles are 206.7(4) pm and 176.3(2)° for 1, 207.2(2) pm and 180.0° for 3a, 205.7(4)/206.7(4) pm and 170.5(1)° for 4. In the complexes 3a and 4, the 0-ligands are bonded to the Hg atoms perpendicularly to the N? Hg? N axes, leading in 3a to a square-planar trans-(N2O2) coordination with Hg? 0 261.2(2) pm and N? Hg? O 92.3(1)/87.7(1)°, in 4 to a slightly distorted T-shaped (N2O) geometry with Hg? 0 246.2(4)pm and N? Hg? 0 96.7(1)/92.0(1)°. In all three structures, the primary coordination is extended to a severely distorted (N2O4) hexacoordination by the appropriate number of secondary, inter- and/or intramolecular Hg…?0 inter-actions (0 atoms from sulfonyl groups, Hg…?O distances in the range 280—300pm). The intramolecular Hg…?O interactions give rise to nearly planar four-membered [HgNSO] rings. The molecule of 1 has a two-fold axis through the bisector of the N? Hg? N angle, the molecule of 3a an inversion center at the Hg atom. The molecule of 4 has no symmetry.  相似文献   

19.
The saturation vapour pressures of WOBr4 and WO2Br2 and their reaction equilibria have been determined by means of a membrane zero manometer and ampoule quenching experiments, respectively. From the pressuretemperature dependence the following sublimation data were estimated: Δ H° (subl., WOBr4, 298) = 29.4 (± 1.0) kcal/mole; Δ H° (subl., WO2Br2, 298) = 36.6 (±1.5) kcal/mole; Δ S° (subl., WOBr4, 298) = 50.1 (± 1) cl; Δ S° (subl. WO2Br2, 298) = 53.0 (±1.5) cl. For the decomposition reaction of solid WO2Br2 were obtained: Δ H° (s, 690) 37.5 (± 0.7) kcal/mole, Δ S° (s, 690) = 49.0 (± 0.5) cl; and for the decomposition of gaseous WO2Br2: Δ H° (g, 690) = ?29.6 (± 2.0) kcal/mole, Δ S°. (g, 690) = ?44.5 (± 1.5) cl.  相似文献   

20.
Mixtures of strontium and mercury in molar ratios of 7:3 have been annealed for 20 days at 520°C. From the pure product Sr3Hg2 single crystals have been obtained. Sr3Hg2 crystallizes in the U3Si2 type of structure (space group P4/mbm); the cell constants are a = 8.883 (2) Å and c = 4.553(1) Å. All of the Hg atoms are involved in Hg2 dumbbells with Hg? Hg distances of 3.41 Å.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号