首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
L. Ji 《组合设计杂志》2007,15(2):151-166
A (2,3)‐packing on X is a pair (X, ), where is a set of 3‐subsets (called blocks) of X, such that any pair of distinct points from X occurs together in at most one block. Its leave is a graph (X,E) such that E consists of all the pairs which do not appear in any block of . In this article, we shall construct a set of 6k ? 2 disjoint (2,3)‐packings of order 6k + 4 with K1,3 ∪ 3kK2 or G1 ∪ (3k ? 1)K2 as their common leave for any integer k ≥ 1 with a few possible exceptions (G1 is a special graph of order 6). Such a system can be used to construct perfect threshold schemes as noted by Schellenberg and Stinson ( 22 ). © 2006 Wiley Periodicals, Inc. J Combin Designs  相似文献   

2.
The interval number of a graph G, denoted by i(G), is the least natural number t such that G is the intersection graph of sets, each of which is the union of at most t intervals. Here we settle a conjecture of Griggs and West about bounding i(G) in terms of e, that is, the number of edges in G. Namely, it is shown that i(G) ≤ + 1. It is also observed that the edge bound induces i(G) ≤ , where γ(G) is the genus of G. © 1999 John Wiley & Sons, Inc. J Graph Theory 32: 153–159, 1999  相似文献   

3.
Let denote the set of graphs with each vertex of degree at least r and at most s, v(G) the number of vertices, and τk (G) the maximum number of disjoint k‐edge trees in G. In this paper we show that
  • (a1) if G ∈ and s ≥ 4, then τ2(G) ≥ v(G)/(s + 1),
  • (a2) if G ∈ and G has no 5‐vertex components, then τ2(G) ≥ v(G)4,
  • (a3) if G ∈ and G has no k‐vertex component, where k ≥ 2 and s ≥ 3, then τk(G) ≥ (v(G) ‐k)/(skk + 1), and
  • (a4) the above bounds are attained for infinitely many connected graphs.
Our proofs provide polynomial time algorithms for finding the corresponding packings in a graph. © 2007 Wiley Periodicals, Inc. J Graph Theory 55: 306–324, 2007  相似文献   

4.
Consider the triangle‐free process, which is defined as follows. Start with G(0), an empty graph on n vertices. Given G(i ‐ 1), let G(i) = G(i ‐ 1) ∪{g(i)}, where g(i) is an edge that is chosen uniformly at random from the set of edges that are not in G(i ? 1) and can be added to G(i ‐ 1) without creating a triangle. The process ends once a maximal triangle‐free graph has been created. Let H be a fixed triangle‐free graph and let XH(i) count the number of copies of H in G(i). We give an asymptotically sharp estimate for ??(XH(i)), for every \begin{align*}1 \ll i \le 2^{-5} n^{3/2} \sqrt{\ln n}\end{align*}, at the limit as n. Moreover, we provide conditions that guarantee that a.a.s. XH(i) = 0, and that XH(i) is concentrated around its mean.© 2011 Wiley Periodicals, Inc. Random Struct. Alg., 2011  相似文献   

5.
Let α denote a permutation of the n vertices of a connected graph G. Define δα(G) to be the number , where the sum is over all the unordered pairs of distinct vertices of G. The number δα(G) is called the total relative displacement of α (in G). So, permutation α is an automorphism of G if and only if δα(G) = 0. Let π(G) denote the smallest positive value of δα(G) among the n! permutations α of the vertices of G. A permutation α for which π(G) = δα(G) has been called a near‐automorphism of G [ 2 ]. We determine π(K) and describe permutations α of K for which π(K) = δα(K). This is done by transforming the problem into the combinatorial optimization problem of maximizing the sums of the squares of the entries in certain t by t matrices with non–negative integer entries in which the sum of the entries in the ith row and the sum of the entries in the ith column each equal to ni,1≤it. We prove that for positive integers, n1n2≤…≤nt, where t≥2 and nt≥2, where k0 is the smallest index for which n = n+1. As a special case, we correct the value of π(Km,n), for all m and n at least 2, given by Chartrand, Gavlas, and VanderJagt [ 2 ]. © 2002 Wiley Periodicals, Inc. J Graph Theory 41: 85–100, 2002  相似文献   

6.
It is shown that if G is a graph of order n with minimum degree δ(G), then for any set of k specified vertices {v1,v2,…,vk} ? V(G), there is a 2‐factor of G with precisely k cycles {C1,C2,…,Ck} such that viV(Ci) for (1 ≤ ik) if or 3k + 1 ≤ n ≤ 4k, or 4kn ≤ 6k ? 3,δ(G) ≥ 3k ? 1 or n ≥ 6k ? 3, . Examples are described that indicate this result is sharp. © 2003 Wiley Periodicals, Inc. J Graph Theory 43: 188–198, 2003  相似文献   

7.
A graph G is stratified if its vertex set is partitioned into classes, called strata. If there are k strata, then G is k-stratified. These graphs were introduced to study problems in VLSI design. The strata in a stratified graph are also referred to as color classes. For a color X in a stratified graph G, the X-eccentricity e X(v) of a vertex v of G is the distance between v and an X-colored vertex furthest from v. The minimum X-eccentricity among the vertices of G is the X-radius radX G of G and the maximum X-eccentricity is the X-diameter diamX G. It is shown that for every three positive integers a, b and k with ab, there exist a k-stratified graph G with radX G = a and diamX G = b. The number s X denotes the minimum X-eccetricity among the X-colored vertices of G. It is shown that for every integer t with radX G t diamX G, there exist at least one vertex v with e X(v) = t; while if radX G t s X, then there are at least two such vertices. The X-center C X(G) is the subgraph induced by those vertices v with e X(v) = radX G and the X-periphery P X (G) is the subgraph induced by those vertices v with e X(G) = diamX G. It is shown that for k-stratified graphs H 1, H 2,..., H k with colors X 1, X 2,..., X k and a positive integer n, there exists a k-stratified graph G such that C X i(G) H i (1 ; i ; k1) and for i j. Those k-stratified graphs that are peripheries of k-stratified graphs are characterized. Other distance-related topics in stratified graphs are also discussed.  相似文献   

8.
For graphs G and F we write F → (G)1r if every r-coloring of the vertices of F results in a monochromatic copy of G. The global density m(F) of F is the maximum ratio of the number of edges to the number of vertices taken over all subgraphs of F. Let We show that The lower bound is achieved by complete graphs, whereas, for all r ≥ 2 and ? > 0, mcr(Sk, r) > r - ? for sufficiently large k, where Sk is the star with k arms. In particular, we prove that   相似文献   

9.
Let R(G) denote the minimum integer N such that for every bicoloring of the edges of KN, at least one of the monochromatic subgraphs contains G as a subgraph. We show that for every positive integer d and each γ,0 < γ < 1, there exists k = k(d,γ) such that for every bipartite graph G = (W,U;E) with the maximum degree of vertices in W at most d and , . This answers a question of Trotter. We give also a weaker bound on the Ramsey numbers of graphs whose set of vertices of degree at least d + 1 is independent. © 2001 John Wiley & Sons, Inc. J Graph Theory 37: 198–204, 2001  相似文献   

10.
Let n be a positive integer and λ > 0 a real number. Let Vn be a set of n points in the unit disk selected uniformly and independently at random. Define G(λ, n) to be the graph with vertex set Vn, in which two vertices are adjacent if and only if their Euclidean distance is at most λ. We call this graph a unit disk random graph. Let and let X be the number of isolated points in G(λ, n). We prove that almost always Xn when 0 ≤ c < 1. It is known that if where ?(n) → ∞, then G(λ, n) is connected. By extending a method of Penrose, we show that under the same condition on λ, there exists a constant K such that the diameter of G(λ, n) is bounded above by K · 2/λ. Furthermore, with a new geometric construction, we show that when and c > 2.26164 …, the diameter of G(λ, n) is bounded by (4 + o(1))/λ; and we modify this construction to yield a function c(δ) > 0 such that the diameter is at most 2(1 + δ + o(1))/λ when c > c(δ). © 2005 Wiley Periodicals, Inc. Random Struct. Alg., 2006  相似文献   

11.
It is known that the functions FG(k) and IG(k) evaluating the numbers of nowhere-zero k- and k-flows in a graph G, respectively, are polynomials of k. If X is a totally cyclic orientation of G, then the number of integral flows having values 1,,k–1 on the arcs of X can be evaluated by a polynomial IX(k). FG(k) and IG(k) can be expressed as sums of IX(k). In this paper we show that the value IX(k) is positive for every totally cyclic orientation X of G if and only if k is greater than or equal to the maximum cardinality of an elementary edge-cut of G.Acknowledgments.This paper was finished during visiting School of Mathematics, Georgia Institute of Technology, Atlanta, Georgia.Mathematics Subject Classification (1991): 05C15, 05C20  相似文献   

12.
Let X be a Banach space of real-valued functions on [0, 1] and let ?(X) be the space of bounded linear operators on X. We are interested in solutions R:(0, ∞) → ?(X) for the operator Riccati equation where T is an unbounded multiplication operator in X and the Bi(t)'s are bounded linear integral operators on X. This equation arises in transport theory as the result of an invariant embedding of the Boltzmann equation. Solutions which are of physical interest are those that take on values in the space of bounded linear operators on L1(0, 1). Conditions on X, R(0), T, and the coefficients are found such that the theory of non-linear semigroups may be used to prove global existence of strong solutions in ?(X) that also satisfy R(t) ? ?(L1(0,1)) for all t ≥ 0.  相似文献   

13.
Given a graph G=(V,E) with strictly positive integer weights ωi on the vertices iV, a k-interval coloring of G is a function I that assigns an interval I(i){1,…,k} of ωi consecutive integers (called colors) to each vertex iV. If two adjacent vertices x and y have common colors, i.e. I(i)∩I(j)≠0/ for an edge [i,j] in G, then the edge [i,j] is said conflicting. A k-interval coloring without conflicting edges is said legal. The interval coloring problem (ICP) is to determine the smallest integer k, called interval chromatic number of G and denoted χint(G), such that there exists a legal k-interval coloring of G. For a fixed integer k, the k-interval graph coloring problem (k-ICP) is to determine a k-interval coloring of G with a minimum number of conflicting edges. The ICP and k-ICP generalize classical vertex coloring problems where a single color has to be assigned to each vertex (i.e., ωi=1 for all vertices iV).Two k-interval colorings I1 and I2 are said equivalent if there is a permutation π of the integers 1,…,k such that I1(i) if and only if π()I2(i) for all vertices iV. As for classical vertex coloring, the efficiency of algorithms that solve the ICP or the k-ICP can be increased by avoiding considering equivalent k-interval colorings, assuming that they can be identified very quickly. To this purpose, we define and prove a necessary and sufficient condition for the equivalence of two k-interval colorings. We then show how a simple tabu search algorithm for the k-ICP can possibly be improved by forbidding the visit of equivalent solutions.  相似文献   

14.
Given a fixed multigraph H with V(H) = {h1,…, hm}, we say that a graph G is H‐linked if for every choice of m vertices v1, …, vm in G, there exists a subdivision of H in G such that for every i, vi is the branch vertex representing hi. This generalizes the notion of k‐linked graphs (as well as some other notions). For a family of graphs, a graph G is ‐linked if G is H‐linked for every . In this article, we estimate the minimum integer r = r(n, k, d) such that each n‐vertex graph with is ‐linked, where is the family of simple graphs with k edges and minimum degree at least . © 2008 Wiley Periodicals, Inc. J Graph Theory 58: 14–26, 2008  相似文献   

15.
Let ??k(n, p) be the random k‐uniform hypergraph on V = [n] with edge probability p. Motivated by a theorem of Erd?s and Rényi 7 regarding when a random graph G(n, p) = ??2(n, p) has a perfect matching, the following conjecture may be raised. (See J. Schmidt and E. Shamir 16 for a weaker version.) Conjecture. Let k|n for fixed k ≥ 3, and the expected degree d(n, p) = p(). Then (Erd?s and Rényi 7 proved this for G(n, p).) Assuming d(n, p)/n1/2 → ∞, Schmidt and Shamir 16 were able to prove that ??k(n, p) contains a perfect matching with probability 1 ? o(1). Frieze and Janson 8 showed that a weaker condition d(n, p)/n1/3 → ∞ was enough. In this paper, we further weaken the condition to A condition for a similar problem about a perfect triangle packing of G(n, p) is also obtained. A perfect triangle packing of a graph is a collection of vertex disjoint triangles whose union is the entire vertex set. Improving a condition pcn?2/3+1/15 of Krivelevich 12 , it is shown that if 3|n and p ? n?2/3+1/18, then © 2003 Wiley Periodicals, Inc. Random Struct. Alg., 23: 111–132, 2003  相似文献   

16.
Let G be a bipartite graph with bicoloration {A, B}, |A| = |B|, and let w : E(G) K where K is a finite abelian group with k elements. For a subset S E(G) let . A Perfect matching M E(G) is a w-matching if w(M) = 1.A characterization is given for all w's for which every perfect matching is a w-matching.It is shown that if G = K k+1,k+1 then either G has no w-matchings or it has at least 2 w-matchings.If K is the group of order 2 and deg(a) d for all a A, then either G has no w-matchings, or G has at least (d – 1)! w-matchings.R. Meshulam: Research supported by a Technion V.P.R. Grant No. 100-854.  相似文献   

17.
Let G be a graph and let k′(G) be the edge-connectivity of G. The strength of G, denoted by k?′(G), is the maximum value of k′(H), where H runs over all subgraphs of G. A simple graph G is called k-maximal if k?′(G) ≤ k but for any edge eE(Gc), k?′(G + e) ≥ k + 1. Let G be a k-maximal graph of order n. In [3], Mader proved |E(G)| ≤ (n - k)k + (). In this note, we shall show (n - 1)k - () In?n/k + 2)? ≤ |E(G|, and characterize the extremal graphs. We shall also give a characterization of all k-maximal graphs.  相似文献   

18.
Let k be a fixed integer and fk(n, p) denote the probability that the random graph G(n, p) is k‐colorable. We show that for k≥3, there exists dk(n) such that for any ϵ>0, (1) As a result we conclude that for sufficiently large n the chromatic number of G(n, d/n) is concentrated in one value for all but a small fraction of d>1. ©1999 John Wiley & Sons, Inc. Random Struct. Alg., 14, 63–70, 1999  相似文献   

19.
Let be a 2‐factorization of the complete graph Kv admitting an automorphism group G acting doubly transitively on the set of vertices. The vertex‐set V(Kv) can then be identified with the point‐set of AG(n, p) and each 2‐factor of is the union of p‐cycles which are obtained from a parallel class of lines of AG(n, p) in a suitable manner, the group G being a subgroup of A G L(n, p) in this case. The proof relies on the classification of 2‐(v, k, 1) designs admitting a doubly transitive automorphism group. The same conclusion holds even if G is only assumed to act doubly homogeneously. © 2006 Wiley Periodicals, Inc. J Combin Designs  相似文献   

20.
For a graph G whose number of edges is divisible by k, let R(G,Zk) denote the minimum integer r such that for every function f: E(Kr) ? Zk there is a copy G1 of G in Kr so that Σe∈E(G1) f(e) = 0 (in Zk). We prove that for every integer k1 R(Kn, Zk)n + O(k3 log k) provided n is sufficiently large as a function of k and k divides (). If, in addition, k is an odd prime-power then R(Kn, Zk)n + 2k - 2 and this is tight if k is a prime that divides n. A related result is obtained for hypergraphs. It is further shown that for every graph G on n vertices with an even number of edges R(G,Z2)n + 2. This estimate is sharp. © 1993 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号