首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 14 毫秒
1.
Let T(G) be the number of spanning trees in graph G. In this note, we explore the asymptotics of T(G) when G is a circulant graph with given jumps.The circulant graph is the 2k-regular graph with n vertices labeled 0,1,2,…,n−1, where node i has the 2k neighbors i±s1,i±s2,…,i±sk where all the operations are . We give a closed formula for the asymptotic limit as a function of s1,s2,…,sk. We then extend this by permitting some of the jumps to be linear functions of n, i.e., letting si, di and ei be arbitrary integers, and examining
  相似文献   

2.
3.
A plane graph is called symmetric if it is invariant under the reflection across some straight line (called symmetry axis). Let G be a symmetric plane graph. We prove that if there is no edge in G intersected by its symmetry axis then the number of spanning trees of G can be expressed in terms of the product of the number of spanning trees of two smaller graphs, each of which has about half the number of vertices of G.  相似文献   

4.
The problem studied is the following: Find a simple connected graph G with given numbers of vertices and edges which minimizes the number tμ(G), the number of spanning trees of the multigraph obtained from G by adding μ parallel edges between every pair of distinct vertices. If G is nearly complete (the number of edges qis ≥(2P)?p+2 where p is the number of vertices), then the solution to the minimization problem is unique (up to isomorphism) and the same for all values of μ. The present paper investigates the case whereq<(2P)?p+2. In this case the solution is not always unique and there does not always exist a common solution for all values of μ. A (small) class of graphs is given such that for any μ there exists a solution to the problem which is contained in this class. For μ = 0 there is only one graph in the class which solves the problem. This graph is described and the minimum value of t0(G) is found. In order to derive these results a representation theorem is proved for the cofactors of a special class of matrices which contains the tree matrices associated with graphs.  相似文献   

5.
6.
7.
In this paper, we examine the moments of the number of d ‐factors in begin{align*}mathcal{ G}(n,p)end{align*} for all p and d satisfying d3 = o(p2n). We also determine the limiting distribution of the number of d ‐factors inside this range with further restriction that begin{align*}(1-p)sqrt{dn}toinftyend{align*} as n.© 2012 Wiley Periodicals, Inc. Random Struct. Alg., 2013  相似文献   

8.
We show that for positive integers n, m with n(n−1)/2≥mn−1, the graph Ln,m having n vertices and m edges that consists of an (nk)-clique and k−1 vertices of degree 1 has the fewest spanning trees among all connected graphs on n vertices and m edges. This proves Boesch’s conjecture [F.T. Boesch, A. Satyanarayana, C.L. Suffel, Least reliable networks and reliability domination, IEEE Trans. Commun. 38 (1990) 2004-2009].  相似文献   

9.
Let 1?s1<s2<?<sk?⌊n/2⌋ be given integers. An undirected even-valent circulant graph, has n vertices 0,1,2,…, n-1, and for each and j(0?j?n-1) there is an edge between j and . Let stand for the number of spanning trees of . For this special class of graphs, a general and most recent result, which is obtained in [Y.P. Zhang, X. Yong, M. Golin, [The number of spanning trees in circulant graphs, Discrete Math. 223 (2000) 337-350]], is that where an satisfies a linear recurrence relation of order 2sk-1. And, most recently, for odd-valent circulant graphs, a nice investigation on the number an is [X. Chen, Q. Lin, F. Zhang, The number of spanning trees in odd-valent circulant graphs, Discrete Math. 282 (2004) 69-79].In this paper, we explore further properties of the numbers an from their combinatorial structures. Comparing with the previous work, the differences are that (1) in finding the coefficients of recurrence formulas for an, we avoid solving a system of linear equations with exponential size, but instead, we give explicit formulas; (2) we find the asymptotic functions and therefore we ‘answer’ the open problem posed in the conclusion of [Y.P. Zhang, X. Yong, M. Golin, The number of spanning trees in circulant graphs, Discrete Math. 223 (2000) 337-350]. As examples, we describe our technique and the asymptotics of the numbers.  相似文献   

10.
A spanning tree of a properly edge-colored complete graph, Kn, is rainbow provided that each of its edges receives a distinct color. In 1996, Brualdi and Hollingsworth conjectured that if K2m is properly (2m?1)-edge-colored, then the edges of K2m can be partitioned into m rainbow spanning trees except when m=2. By means of an explicit, constructive approach, in this paper we construct ?6m+93? mutually edge-disjoint rainbow spanning trees for any positive value of m. Not only are the rainbow trees produced, but also some structure of each rainbow spanning tree is determined in the process. This improves upon best constructive result to date in the literature which produces exactly three rainbow trees.  相似文献   

11.
In this paper, we consider a class of nonlinear matrix equation of the type \(X+\sum _{i=1}^mA_i^{*}X^{-q}A_i-\sum _{j=1}^nB_{j}^{*}X^{-r}B_j=Q\), where \(0<q,\,r\le 1\) and Q is positive definite. Based on the Schauder fixed point theorem and Bhaskar–Lakshmikantham coupled fixed point theorem, we derive some sufficient conditions for the existence and uniqueness of the positive definite solution to such equations. An iterative method is provided to compute the unique positive definite solution. A perturbation estimation and the explicit expression of Rice condition number of the unique positive definite solution are also established. The theoretical results are illustrated by numerical examples.  相似文献   

12.
13.
14.
《Journal of Graph Theory》2018,88(2):294-301
Suppose is a loopless graph and is the graph obtained from G by subdividing each of its edges k () times. Let be the set of all spanning trees of G, be the line graph of the graph and be the number of spanning trees of . By using techniques from electrical networks, we first obtain the following simple formula: Then we find it is in fact equivalent to a complicated formula obtained recently using combinatorial techniques in [F. M. Dong and W. G. Yan, Expression for the number of spanning trees of line graphs of arbitrary connected graphs, J. Graph Theory. 85 (2017) 74–93].  相似文献   

15.
16.
A setE ofk edges in a multigraphG=(V,E) is said to be ak most vital edge set (k-MVE set) if these edges being removed fromG, the resultant graphG=(V,EE) has minimum number of spanning trees. The problem of finding ak-MVE set for two-terminal series-parallel graphs is considered in this paper. We present anO (|E|) time algorithm for the casek=1, and anO(|V| k +|E|) time algorithm for arbitraryk.  相似文献   

17.
18.
We show that almost everyG m-out containsm edge disjoint spanning trees.  相似文献   

19.
The main purpose of the paper is to develop an approach to the evaluation or the estimation of the spanning tree congestion of planar graphs. This approach is used to evaluate the spanning tree congestion of triangular grids.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号