首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ozone water reaction including a complex was studied at the MP2/6-311++G(d,p) and CCSD/6-311++G(2df,2p)//MP2/6-311++G(d,p) levels of theory. The interaction between water oxygen and central oxygen of ozone produces stable H2O-O3 complex with no barrier. With decomposition of this complex through H-abstraction by O3 and O-abstraction by H2O, three possible product channels were found. Intrinsic reaction coordinate, topological analyses of atom in molecule, and vibrational frequency calculation have been used to confirm the preferred mechanism. Thermodynamic data at T = 298.15 K and atmospheric pressure have been calculated. The results show that the production of hydrogen peroxide is the main reaction channel with ΔG = ?21.112 kJ mol-1.  相似文献   

2.
Heating of solutions of polyfluorinated tetralines containing chlorine or bromine atoms in the position 2 (2, 3) in SbF5 at 200 - 240° leads to the contraction of the alicylic ring of tetraline to form polyfluorinated 1 - methylindanes. The six - membered alicyclic ring of perfluorotetraline and 1,1,4,4,- tetrachlorooctafluorotetraline doesn't undergo any changes under the same conditions. The probable route of this reaction is discussed.  相似文献   

3.
4.
Structural aspects and the unimolecular fragmentations of doubly protonated benzene are studied by means of tandem-mass spectrometry. The corresponding dications are generated by electron ionization (EI) of 1,3- and 1,4-cyclohexadienes, respectively. It is suggested that EI of 1,3-cyclohexadiene leads to the singlet state of doubly protonated benzene, whereas EI of 1,4-cyclohexadiene yields a mixture of singlet and triplet states. Unimolecular fragmentation of doubly protonated benzene exclusively proceeds via dehydrogenation leading to the benzene dication. The proton affinities (PAs) of protonated benzene amount to PA(C(6)H(7)(+))(meta) = 1.9 +/- 0.3 eV for protonation taking place at the meta-position, PA(C(6)H(7)(+))(ortho) = 1.5 +/- 0.2 eV, and PA(C(6)H(7)(+))(para) = 0.9 +/- 0.2 eV, respectively. Various facets of the experiments are compared with density functional theory calculations and generally good agreement is found.  相似文献   

5.
6.
《Chemical physics letters》1986,130(4):330-332
Ab initio MO calculations predict the preferred site of protonation of N2O to be at the oxygen atom, and yield a structure of N2OH+ and protonation energies in excellent accord with experiment.  相似文献   

7.
Thermochemical data, ΔH n o , ΔS n o , and ΔG n o , for the hydration of protonated nucleic acid bases and protonated nucleosides have been experimentally studied by equilibrium measurements using an electrospray high-pressure mass spectrometer equipped with a pulsed ion-beam reaction chamber. For protonated nucleobases the hydration enthalpies were found to be similar for all studied systems and varied between 12.4–13.1 kcal/mol for the first and 11.2–11.5 kcal/mol for the second water molecule. While for protonated nucleosides the water binding enthalpies (11.7–13.3 kcal/mol) are very close to those for protonated nucleobases, the entropy values are “more negative.” The structural and energetic aspects of hydrated ions are discussed in conjunction with the available theoretical data.  相似文献   

8.
The acetylene cyclotrimerization reaction mediated by the left-hand-side bare transition metal atoms Y, Zr, Nb, and Mo has been studied theoretically, employing DFT in its B3LYP formulation. The complete reaction mechanism has been analyzed, identifying intermediates and transition states. Both the ground spin state and at least one low-lying excited state have been considered to establish whether possible spin crossings between surfaces of different multiplicity can occur. Our results show that the overall reaction is highly favorable from a thermodynamic point of view and ground state transition states lie always below the energy limit represented by ground state reactants. After the activation of two acetylene molecules and formation of a bis-ligated complex, the reaction proceeds to give a metallacycle intermediate, as the alternative formation of a cyclobutadiene complex is energetically disfavored. All the examined reaction paths involve formation of a metallacycloheptatriene intermediate that in turn generates a metal-benzene adduct from which finally benzene is released. Similarities and differences in the behaviors of the considered four metal atoms have been examined.  相似文献   

9.
10.
The possibility of metal-metal cooperativity in improving the yield of the homogeneous water gas shift reaction (WGSR) has been investigated through full quantum mechanical density functional theory calculations. The calculations indicate that bimetallic catalysts would be likely to be more highly active than mononuclear metal-based catalysts for the WGSR. The results have implications for the design of improved WGSR catalysts in the future.  相似文献   

11.
Ab initio MP2 calculations of all isomeric arenoium ions (AI) ofortho-, meta-, andpara-dichlorobenzenes in the gas phase were carried out with full optimization of geometry with the 6–31 G* basis set. The calculated proton affinities depend substantially on the position of geminal center in the corresponding dichlorobenzenonium ion and decrease in the series 1,2-dichloro-4H-benzenonium>1,2-dichloro-3H-benzenonium>1,2-dichloro-2H-benzenonium; 1,3-dichloro-4H-benzenonium>1,2-dichloro-3H-benzenonium >1,3-dichloro-5H-benzenonium>1,3-dichloro-3H-benzenonium; 1,4-dichloro-2H-benzenonium >1,4-dichloro-4H-benzenonium. The structures of transition states and activation energies (E a) of almost all 1,2-shifts of H and Cl atoms in Al were determined. The activation energies of migrations of H atoms are about 6 kcal mol−1 less than those of migrations of Cl atoms in similar structures. The isomerization routes and relations between the rate constants for isomerization of dichlorobenzenes through Al were established. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 1726–1731, September, 1998.  相似文献   

12.
Ab initio molecular orbital calculations have been used to determine the structure of protonated ozone. Four stable minima were found on the O3H+ singlet potential energy surface. Three forms correspond to ozone protonated at the central oxygen (C2v) or at the terminal oxygen (two Cs isomers, E and Z). The fourth isomer (Cs) is a derivative of trioxirane. The most stable structure is the planar E form I. The proton affinity of ozone (to give I) is given as 123.6 kcal/mole (MP2/6-31G*//4-31G). The energy difference between I and protonated trioxirane VI is greater than that between ozone and trioxirane.  相似文献   

13.
1.  From MNDO quantum chemical calculations, opening of the episulfonium ion ring by neutral nucleophiles X (X=NH3 and HCN) and related SN2 reactions of protonated methylthiol (PMT) with X proceed through formation of pre-reaction complexes in which X is coordinated either at the reacting C atom or (only in opening of episulfonium ion rings) at the center of the C-C bond.
2.  In their electronic structure, the transition states for the reactions are reminiscent of a carbocation simultaneously reacting with the attacking and the leaving nucleophilic fragments (X S).
3.  Opening of episulfonium ion rings proceeds slightly more easily (Ea 10–12 kcal/mole) than substitution in PMT (Ea 22–25 kcal/mole). The ease of ring opening for episulfonium ions is due to the large exothermicity of the reaction and the lower internal activation barrier compared with SN2 reactions in PMT.
Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 7, pp. 1573–1580, July, 1989.  相似文献   

14.
Mass spectrometry-based methods have been employed in order to study the reactions of non- (h(6)/h(6)), half (d(6)/h(6)), and fully (d(6)/d(6)) deuterium labeled protonated dimers of acetone in the gas phase. Neither kinetic nor thermodynamic isotope effects were found. From MIKES experiments (both spontaneous and collision-induced dissociations), it was found that the relative ion yield (m/z 65 vs m/z 59) from the dissociation reaction of half deuterium labeled (d(6)/h(6)) protonated dimer of acetone is dependent on the internal energy. A relative ion yield (m/z 65 vs m/z 59) close to unity is observed for cold, nonactivated, metastable ions, whereas the ion yield is observed to increase (favoring m/z 65) when the pressure of the collision gas is increased. This is in striking contrast to what would be expected if a kinetic isotope effect were present. A combined study of the kinetics and the thermodynamics of the association reaction between acetone and protonated acetone implicates the presence of at least two isomeric adducts. We have employed G3(MP2) theory to map the potential energy surface leading from the reactants, acetone and protonated acetone, to the various isomeric adducts. The proton-bound dimer of acetone was found to be the lowest-energy isomer, and protonated diacetone alcohol the next lowest-energy isomer. Protonated diacetone alcohol, even though it is an isomer hidden behind many barriers, can possibly account for the observed relative ion yield and its dependence on the mode of activation.  相似文献   

15.
16.
Multiply protonated clusters of betaine are formed via electrospray ionisation and fragment via competitive betaine neutral loss and charge separation; theoretical calculations suggest the [M(n)+2H](2+) ions consist of a [M(2)+2H](2+) core based on the hydrogen bonded carboxylic acid dimer.  相似文献   

17.
The kinetics of the thermal reaction of mixtures of ethylene and cyclopentene has been examined for the occurrence of a concerted hydrogen-transfer reaction, . The main products of the reaction were ethane and cyclopentadiene, and the rate of formation of ethane was first order in each reactant over a 2500-fold change in the ratio of concentrations of the reactants. An increased surface-to-volume ratio of the reaction vessel or additions of oxygen and nitric oxide had little effect on the rate of formation of ethane, and it was concluded that the dominant reaction in the system was the concerted hydrogen-transfer process. The rate constant for the reaction, measured over the temperature range of 325–505°C, was represented as   相似文献   

18.
19.
Fagnou et al. reported direct arylation reactions that use palladium catalysts to couple Ar(1)-X to Ar(2)-H with the aid of a coordinated base. These reactions are particularly favourable for polyfluorinated arenes Ar(2)-H (see S. I. Gorelsky, D. Lapointe and K. Fagnou, J. Am. Chem. Soc. 2008, 130, 10848). In this paper, we show by means of a DFT analysis how the energetics and activation energies vary with fluorine substitution and examine the structures of intermediates and transition states. The reactant is modelled by Pd(OAc)(Ph)(PMe(3))(DMA) (DMA = dimethylacetamide). The sequence consists of (a) replacement of DMA by arene, (b) Concerted Deprotonation Metallation (CMD), (c) decoordination of AcOH, (d) reductive elimination of biaryl. Many of the variations are dominated by the number of fluorine substituents ortho to the C-H bond and fall into three groups labelled accordingly: Set0Fo, Set1Fo, and Set2Fo. In the first step a coordinated solvent is replaced by the arene. The arenes of Set0Fo and Set1Fo coordinate in a conventional η(2)-CH=CH mode, whereas the arenes of Set2Fo coordinate in an η(1)-CH mode assisted by an OH-C hydrogen bond from the coordinated acetate. Both the energy barriers to CMD and the product energies fall into the three typical sets with the highest barrier and highest product energy being for Set0Fo. They correlate more satisfactorily with the variations in Pd-C bond energies than with the C-H acidities. The barriers to reductive elimination from Pd(Ph)(Ar(F))(PMe(3))(AcOH) increase systematically from Set0Fo to Set2Fo as the Pd-C bond becomes stronger in a regular fashion from Set0Fo to Set2Fo. Again there is a strong correlation between the energy barriers to reductive elimination and the Pd-C bond energies. It is found overall that the key aspects of the reactions are: (a) the lowering of the energy of the CMD step by the ortho fluorine substituents, (b) the regioselective activation of C-H bonds ortho to fluorine which is also determined at the CMD step, (c) the decoordination of AcOH, which maintains the transition state for reductive elimination at low Gibbs free energy. The presence of fluorine increases the effectiveness of the reaction in the sense of points a and b via the increasing strength of the palladium-carbon bond.  相似文献   

20.
Syntheses of gem-difluorocyclopropyl ketones (3a–d) and their reactions with nucleophiles are described. Ring opening reactions of 3a,c and d with a methanolate and a thiolate anion took entirely different courses of bond scission of the cyclopropane ring.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号