首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
On Chalcogenolates. 198. Studies on Polythiocuprates(I) [Cu(Sx)]?. 2. Hydrazinium and Ethylenediammonium Polythiocuprates(I) The red polythiocuprates(I) 1–5 (formulae see ?Inhaltsübersicht”?) have been prepared by reaction of hydrazinium or ethylenediammonium polysulfides with copper(II) salts, dissolved in water, under variable conditions. Their properties are described. In aqueous alkaline media 1–5 decompose into CuS and S; in the presence of carbon disulfide CuS, Sx2?, and CS32? besides CS42? and S2CO2? are formed. The existence of the discreet ion [Cu2CS7]2?, described in literature, was not confirmed. The polythiocuprates(I) 1–5 , dissolved im dimethylformamide, decompose via the radical anion S3?. The decomposition of S3? has been studied kinetically by means of compound 5 . The half-life of decay of S3? is τ1/2 = 71.5 h at 20°C. The pentathiocuprate(I) 3 reacts with n-butyl chloride to produce the substituted sulfanes (C4H9)2Sx′ where x = 1, 2 and 3.  相似文献   

2.
On Chalcogenolates. 178. Studies on Copper(I) Ethyl Xanthate Yellow Cu[S2C? OC2H5] has been prepared by two different methods. In contrast to earlier observations it is not soluble in ethanolic solutions containing [S2C? OC2H5]? ions in excess. Cu[S2C? OC2H5] reacts with CS32? ions to form [Cu(CS3)]?. The compounds [(C6H5)4E][Cu(CS3)] with E = P, As have been isolated.  相似文献   

3.
On Chalcogenolates. 179. Copper(I) Thioxanthates and Thioxanthatocuprates(I) Copper(I) thioxanthates Cu[S2C? SR], where R = C2H5, nC4H9, and CH2? C6H5, have been prepared by two procedures and studied by means of diverse methods. They are soluble in ethanolic and acetonic solutions containing the corresponding [S2C? SR]? ions in excess to yield thioxanthatocuprates(I) [Cun(S2C? SR)n+1]?. The compounds [(C6H5)4P][Cun(S2C? SC2H5)n+1] with n = 1, 4, 6 have been isolated. The existence of [(C6H5)4P][Cu4(S2C? SC4H9)5] and [(C6H5)4P][Cu6(S2C? SCH2? C6H5)7] has been ascertained.  相似文献   

4.
Simple Trithio- and Perthiocarbonato Complexes with Interesting Bond Properties: [E(CS3)2]2? (E = Sn, Zn, Cd), [E(CS3)3]3? (E = As, Sb, Bi, Co), {Cu(CS3)?} and [Zn(CS4)2]2? By reactions of potassium trithiocarbonate ( 1 ) with solutions of zinc(II)- acetylacetonate, cadmium(II)-chloride, tin(II)-chloride, arsenic(III)-sulfide (suspension), antimony(III)-chloride, bismuth(III)-chloride and copper(II)-chloride in dimethyl sulfoxide, as well as of trisodium hexanitrito cobaltate(III) in water, and the precipitation of the complexes with an aqueous solution of tetraphenylphosphonium chloride the compounds (PPh4)2[Zn(CS3)2] ( 2 ), (PPh4)2[Cd(CS3)2] ( 3 ), (PPh4)2[Sn(CS3)2] ( 4 ), (PPh4)3[As(CS3)3] ( 5 ), (PPh4)3[Sb(CS3)3] ( 6 ), (PPh4)3[Bi(CS3)3] ( 7 ), (PPh4)3[Co(CS3)3] ( 8 ) and (PPh4)Cu(CS3) ( 9 ) have been isolated. (PPh4)2[Zn(CS4)2] · CH3NO2 ( 10 ) has been prepared by heating a solution of 2 in nitromethane to 60--70°C in presence of air. The reaction of 1 in dimethyl sulfoxide with an aqueous tetraphenylphosphonium chloride solution in presence of oxygen leads to (PPh4)2[C2S6] ( 11 ). The compounds have been characterized by spectroscopical studies (IR, Raman, UV/Vis, 113Cd/59Co-NMR), magnetic susceptibility measurements, powder diffractometry, elemental analyses and single crystal X-ray structure analysis ( 4 – 7 , 10 and 11 ). The difficult growing of single crystals has been reported in detail. For crystal data see Inhaltsübersicht.  相似文献   

5.
Studies on Polyhalides. III. Crystal Structures of [Cu(NH3)4I2 · I2] and [Cu(NH3)4I3]I3 Tetramminecopper(II)tetraiodide [Cu(NH3)4I2 · I2] (I) crystallizes monoclinically in the space group C2/m with a = 1 185.9 pm, b = 892.8 pm, c = 656.8 pm, β = 111.10° and Z = 2 formula units. Tetramminecopper(II)hexaiodide [Cu(NH3)4I3]I3 (II) crystallizes orthorhombically in the space group Pnnm with a = 874.9 pm, b = 1 089.8 pm, c = 885.3 pm, and Z = 2 formula units. A special feature of these structures are coordinated polyiodide ions I42? (I) or I3? (II). In both compounds four coplanar nitrogen atoms and two axial iodine atoms form a quasi-octahedral coordination around copper with the usual (4+2)-tetragonal distortion. The copper ions are connected by linear, centrosymmetric polyiodide ions I42? (I) or I3? (II). Therefore infinite planar zigzag chains of units [Cu(NH3)4I4] (I) or [Cu(NH3)4I3]+(II) are resulting. The counterion I3? (II) is intercalated between these chains.  相似文献   

6.
Spinels with Substituted Nonmetal Sublattices. VI. X-Ray Investigation, Electronic Properties, Mössbauer and I.R. Spectra of the Spinel System CuCrSn(S1?xSex)4 Polycrystalline samples of the spinel system CuCrSn(S1?xSex)4 have been prepared in the range 0 ≤ x ≤ 1. The lattice constants linearly increase with x while chalcogen parameters remain constant. The calculated distances copper-chalcogen are in agreement with Cu(I). From the Mössbauer spectra we conclude that the bonding is mostly covalent and that Sn is in the oxidation state +4. The substances are p type semiconductors. Resistivities, Seebeck coefficients, and activation energies decrease with increasing x. The electrical properties are compared to those of the system ZnCr2(S1?xSex)4. I.R. spectra have been measured from 50 cm?1 to 600 cm?1.  相似文献   

7.
Preparation and Electronic Spectra of new Trithiocarbonato Complexes; Structure, Properties, and Photoelectronic Spectra of Ni(NH3)3CS3 and Zn(NH3)2CS3 The complex anions [Zn(CS3)2]2?, [Cd(CS3)2]2?, [Co(CS3)3]3?, [Cr(CS3)3]3?, [As(CS3)3]3?, [Sb(CS3)3]3?, [Bi(CS3)3]3?, [Sn(CS3)2]2?, and [Cu(CS3)] could be isolated as tetraphenylphosphonium and tetraphenylarsonium salts. From the electronic spectra of the transition metal complexes it follows that the CS ion exhibits, in comparison with other sulfur containing ligands, relatively large Δ-values and only a small nephelauxetic effect (e.g. in [Cr(CS3)3]3?: Δ = 16.0 kK; β35 = 0.57). The trithiocarbonate ion in all the above complexes acts as a bidentate ligand and forms fourmembered ring systems CS2M. Further it was proved by means of infrared, electronic and photoelectronic spectra that the structure of “Ni(NH3)3CS3” is [Ni(NH3)6][Ni(CS3)2] whereas Zn(NH3)2CS3 has not such an ionic structure.  相似文献   

8.
To gain more insight into the reactivity of intermetalloid clusters, the reactivity of the Zintl phase K12Sn17, which contains [Sn4]4? and [Sn9]4? cluster anions, was investigated. The reaction of K12Sn17 with gold(I) phosphine chloride yielded K7[(η2‐Sn4)Au(η2‐Sn4)](NH3)16 ( 1 ) and K17[(η2‐Sn4)Au(η2‐Sn4)]2(NH2)3(NH3)52 ( 2 ), which both contain the anion [(Sn4)Au(Sn4)]7? ( 1 a ) that consists of two [Sn4]4? tetrahedra linked through a central gold atom. Anion 1 a represents the first binary Au?Sn polyanion. From this reaction, the solvate structure [K([2.2.2]crypt)]3K[Sn9](NH3)18 ( 3 ; [2.2.2]crypt=4,7,13,16,21,24‐hexaoxa‐1,10‐diazabicyclo[8.8.8]hexacosane) was also obtained. In the analogous reaction of mesitylcopper with K12Sn17 in the presence of [18]crown‐6 in liquid ammonia, crystals of the composition [K([18]crown‐6)]2[K([18]crown‐6)(MesH)(NH3)][Cu@Sn9](thf) ( 4 ) were isolated ([18]crown‐6=1,4,7,10,13,16‐hexaoxacyclooctadiene, MesH=mesitylene, thf=tetrahydrofuran) and featured a [Cu@Sn9]3? cluster. A similar reaction with [2.2.2]crypt as a sequestering agent led to the formation of crystals of [K[2.2.2]crypt][MesCuMes] ( 5 ). The cocrystallization of mesitylene in 4 and the presence of [MesCuMes]? ( 5 a ) in 5 provides strong evidence that the migration of a bare Cu atom into an Sn9 anion takes place through the release of a Mes? anion from mesitylcopper, which either migrates to another mesitylcopper to form 5 a or is subsequently protonated to give MesH.  相似文献   

9.
Preparation of trans-[Pt(N3)4X2]2? (X ? Br, I, SCN, SeCN) by Oxidative Addition to [Pt(N3)4]2? in Organic Solvents By oxidative addition to (TBA)2[Pt(N3)4], dissolved in dichlormethane, trans-(TBA)2[Pt(N3)4X2], X ? Br, I, SCN, SeCN; TBA = Tetrabutylammonium, are formed. The vibrational spectra of these salts are assigned according to point group D4h. From the resonance Raman spectrum of trans-(TBA)2[Pt(N3)4I2] the harmonic vibrational frequency ω1 of v(Pt? I), A1g, is calculated to be 138.50 cm?1 and the inharmonicity constant x11 = 0.27 cm?1. The characteristical feature in the UV/VIS spectra is caused by intensive π(N,X) → a1g, b1g(Pt) CT transitions.  相似文献   

10.
Building on previous single crystal X‐ray structure determinations for the group 1 salts of complex thiosulfate/univalent coinage metal anions previously defined for (NH4)9AgCl2(S2O3)4, NaAgS2O3·H2O and Na4[Cu(NH3)4][Cu(S2O3)2]·NH3, a wide variety of similar salts, of the form , M1 = group 1 metal cation, M2 = univalent coinage metal cation (Cu, Ag), (X = univalent anion), most previously known, but some not, have been isolated and subjected to similar determinations. These have defined further members of the isotypic, tetragonal series, for M1 = NH4, M2 = Cu, Ag, X = NO3, Cl, Br, I, together with the K/Cu/NO3 complex, all containing the complex anion [M2(SSO3)4]7? with M2 in an environment of symmetry, Cu, Ag‐S typically ca. 2.37, 2.58Å, with quasi‐tetrahedral S‐M‐S angular environments. Further salts of the form , n = 1‐3, have also been defined: For n = 3, M2 = Cu, M1/x = K/2.25 or 1 5/6, NH4/6, (and also for the (NH4)4Na/4H2O·MeOH adduct) the arrays take the form with distorted trigonal planar CuS3 coordination environments, Cu‐S distances being typically 2.21Å, S‐Cu‐S ranging between 105.31(4)–129.77(4)°; the silver counterparts take the form for M1 = K, NH4. For n = 2, adducts have only been defined for M2 = Ag, the anions of the M1 = Na, K adducts being dimeric and polymeric respectively: Na6[(O3SS)2Ag(μ‐SSO3)2Ag(SSO3)]·3H2O, K3[Ag(μ‐SSO3)2](∞|∞)·H2O; a polymeric copper(I) counterpart of the latter is found in Na5Cu(NO3)2(S2O3)2 ≡ 2NaNO3·Na3[Cu(μ‐SSO3)2](∞|∞). For n = 1, NaAgS2O3, the an‐ and mono‐ hydrates, exhibit a two‐dimensional polymeric complex anion in both forms but with different contributing motifs. (NH4)13Ag3(S2O3)8·2H2O takes the form (NH4)13[{(O3SS)3Ag(μ‐SSO3)}2Ag], a linearly coordinated central silver atom linking a pair of peripheral [Ag(SSO3)4]7? entities. In Na6[(O3SS)Ag(μ‐SSO3)2Ag(SSO3)]·3H2O, the binuclear anions present as Ag2S4 sheets, the associated oxygen atoms being disposed to one side, thus sandwiching layers of sodium ions; the remarkable complex Na5[Ag3(S2O3)4](∞|∞)·H2O is a variant, in which one sodium atom is transformed into silver, linking the binuclear species into a one‐dimensional polymer. In (NH4)8[Cu2(S2O3)5]·2H2O a binuclear anion of the form [(O3SS)2Cu(μ‐S.SO3)Cu(SSO3)2]8? is found; the complex (NH4)11Cu(S2O3)6 is 2(NH4)2(S2O3)·(NH4)7[Cu(SSO3)4]. A novel new hydrate of sodium thiosulfate is described, 4Na4S2O3·5H2O, largely describable as sheets of the salt, shrouded in water molecules to either side, together with a redetermination of the structure of 3K2S2O3·H2O.  相似文献   

11.
On Chalcogenolates. 163. Reactions of Hydrazine with Carbon Disulfide. 2. Crystal Structure of Dipotassium 1,2-Hydrazine-bis (dithioformate) The title compound K2[S2C? NH? NH? CS2] ( 1 ) crystallizes with Z = 4 in the orthorhombic space group Pbna with cell dimensions a = 6.635(1), b = 10.825(2), c = 12.866(2) Å. The crystal structure has been determined from single crystal X-ray data measured at ?85 °C and refined to a conventional R of 0.034 for 969 independent reflections (Rw = 0.042). The [S2C? NH? NH? CS2]2? ions are linked together by hydrogen bridges N? H…?S. The K+ ions are surrounded by seven sulfur atoms in irregular coordination.  相似文献   

12.
About [Ag(S9)]?, a Symmetric Ten-Membered Ring System; Preparation, Structure, and Spectroscopic Characterization of the Sulfur Rich Compound [(PPh3)2N][Ag(S9)] · S8 Orange [(PPh3)2N][Ag(S9)] · S8 ( 1 ) could be obtained by reaction of a definite Sx2?-solution with AgNO3 and characterized by vibrational spectra (IR/Raman) and X-ray structure analysis. The anion [Ag(S9)]? shows a symmetric conformation of a ten-membered ring system. 1 crystallizes in the triclinic space group P1 (a = 1383.8(4), b = 1429.5(4), c = 1540.5(5) pm, α 62.38(2), β 68.05(2), γ 65.86(2)°, V = 2399.1 · 106 pm3, Z = 2; R = 0.077 for 5433 independent reflections (F0 > 3.92 σ(F0))).  相似文献   

13.
Polysulfonyl Amines. XL. Preparation of Silver(I) Disulfonylamide Acetonitrile Complexes. Characterization of Tetraacetonitrilesilver(I) bis(dimesylamido)argentate(I) and (1,1,3,3-Tetraoxo-1,3,2-benzodithiazolido)acetonitrilesilver(I) by X-Ray Diffractometry and Thermal Analysis The following silver(I) disulfonylamides were prepared for the first time or by improved procedures: AgN(SO2CH3)2 ( 2a ); AgN(SO2C6H4-4-X)2 with X = F ( 2b ), Cl ( 2c ), Br ( 2d ), CH3 ( 2e ); silver(I) 1,2-benzenedisulfonimide AgN(SO2)2C6H4 ( 2f ). With acetonitrile, the salts 2a to 2e form (1/2) complexes AgN(SO2R)· 2 CH3CN ( 4a to 4e ), whereas 2f gives the (1/1) complex AgN(SO2)2C6H · CH3CN ( 4f ). The crystallographic data (at - 95°C) for the title compounds 4a and 4f are: 4a , space group C2/c, a = 1 967.6(4), b = 562.2(1), c = 2 353.0(5) pm, β = 102.21(2)°, V = 2.5440 nm3, Z = 4, Dx = 1.891 Mg m?3; 4f , space group P21/m, a = 741.5(3), b = 980.4(4), c = 756.6(3) pm, β = 99.28(2)°, V = 0.5428 nm3, Z = 2, Dx = 2.246 Mg m?3. 4a forms an ionic crystal [Ag(NCCH3)4][Ag{N(SO2CH3)2}2]? with a tetrahedrally coordinated silver atom (lying on a twofold axis) in the cation (225.3/225.7 pm for the two independent Ag? N distances, N? Ag? N 106.2—114.5°) and a linear-dicoordinated silver atom in the centrosymmetric anion (Ag? N 213.9 pm, two intraionic secondary Ag…O contacts 303.4 pm). 4f consists of uncharged molecules [C6H4(SO2)2N1AgN2CCH3] with crystallographic mirror symmetry (Ag? N1 218.8, Ag? N2 216.1 pm, N1? Ag? N2 174.3°), associated into strands by intermolecular secondary silver-oxygen contacts (Ag…O 273.8 pm, O…Ag…O 175.6, N? Ag…O 91.9/88.2°). The thermochemical behaviour of 4f was investigated using thermogravimetry, differential scanning calorimetry (DSC), time- and temperature-resolved X-ray diffractometry (TXRD), and solution calorimetry. The desolvation process occurs in the temperature range from 60 to 200°C and appears to be complex, although no crystalline intermediate could be detected. The desolvation enthalpy at 298 K was found to be + 26.8(4) kJ mol?1. 4a is desolvated in two steps at - 15 to 60°C and 60 to 95°C (DSC), suggesting the formation of AgN(SO2CH3) · CH3CN as an intermediate.  相似文献   

14.
On Chalcogenolates. 164. Reactions of Hydrazine with Carbon Disulfide. 3. Synthesis and Characterization of Trisodium 1,2-Hydrazine-bis(dithiocarboxylate) The mixed dithiocarbamate-dithiocarbimate Na3[S2C? NH? N°CS2] · 7 H2O has been prepared by reaction of H2N? NH2 · H2O with CS2 and NaOH in aqueous solution. It has been characterized by means of diverse methods.  相似文献   

15.
On Chalcogenolates. 159. Reaction of 1,2-Ethanedithiolates with Carbon Disulfide. 1. Synthesis and Characterization of 1,2-Ethane-bis(trithiocarbonates) The reaction of 1,2-ethanedithiolates with carbon disulfide forms the corresponding 1,2-ethane-bis(trithiocarbonates). The compounds M2[S2C? SCH2CH2S? CS2] with M = Li, Na, K, Rb, Cs, NH4, Tl have been characterized with chemical methods as well as by means of electron absorption, infrared, nuclear magnetic resonance (1H and 13C), and mass spectra.  相似文献   

16.
Entry to the Chemistry of Simple Rhenium Sulfur Complexes and Clusters. Preparation and Crystal Structures of R′[ReS4], R′[ReS9], (NH4)4[Re4S22]·2H2O, R′2[Cl2Fe(MoS4)FeCl2]1-x, R′2[(ReS4)Cu3I4] and RR′2[(ReS4)Cu5Br7] (R ? NEt4; R′ ? PPh4, x = 0.3, 0.5) The compounds R[ReS4] ( 1 ), R′[ReS9] ( 2 ), (NH4)4[Re4S22]·2 H2O ( 3 ), R′2[Cl2Fe(MoS4) FeCl2]x[Cl2Fe(ReS4)FeCl2] 1-x (x = 0.3 ( 4 ), 0.5), R′2[(ReS4)Cu3I4] ( 5 ) and R′2[(ReS4)Cu5Br7] ( 6 ) (R ? NEt4; R′ ? PPh4) have been prepared by reaction of perrhenates or rhenium(VII)oxide with Sx2? solutions (under different conditions) or by reactions of metal-halides with [ReS4]?-ions. All compounds have been characterized by complete X- ray structure analysis. For further details see Inhaltsübersicht.  相似文献   

17.
Spinels with Substituted Nonmetal Sublattices. VIII. X-Ray Investigation, Electric Properties, Mössbauer and I.R. Spectra of the System FeCr2(S1?xSex)4 In the system FeCr2(S1?xSex)4 the spinel structure exists in the range 0 ≤ x ≤ 0.33, the monoclinic Cr3S4-structure in the range 0.6 ≤ x ≤ 1. Lattice parameters have been determined and I.R. spectra have been measured between 200 cm?1 and 600 cm?1. Room temperature Mössbauer spectra consist of several overlapping doublets of almost identical isomer shifts but different quadrupole splittings. The Fe doublets are attributed to the coordination polyhedrons S4, S3Se and S2Se2. The spinels are p type semiconductors.  相似文献   

18.
From the reaction of uranium hexafluoride UF6 with dry liquid ammonia, the [UF7(NH3)]3? anion and the [UF4(NH3)4] molecule were isolated and identified for the first time. They are found in signal‐green crystals of trisammonium monoammine heptafluorouranate(IV) ammonia (1:1; [NH4]3[UF7(NH3)] ? NH3) and emerald‐green crystals of tetraammine tetrafluorouranium(IV) ammonia (1:1; [UF4(NH3)4] ? NH3). [NH4]3[UF7(NH3)] ? NH3 features discrete [UF7(NH3)]3? anions with a coordination geometry similar to a bicapped trigonal prism, hitherto unknown for UIV compounds. The emerald‐green [UF4(NH3)4] ? NH3 contains discrete tetraammine tetrafluorouranium(IV) [UF4(NH3)4] molecules. [UF4(NH3)4] ? NH3 is not stable at room temperature and forms pastel‐green [UF4(NH3)4] as a powder that is surprisingly stable up to 147 °C. The compounds are the first structurally characterized ammonia complexes of uranium fluorides.  相似文献   

19.
Heteronuclear Coordination Compounds with Metal—Metal Bonds. VIII. New Heterodinuclear Complexes with Bonds between Copper(I) and Manganese(?I), Iron(?I), or Cobalt(?I) [(en)Cu? Mn(CO)5] ( 1a ), [(dien)Cu? Mn(CO)5] ( 1b ), [(en)Cu? Fe(CO)3(NO)] ( 2a ), [(dien)Cu? Fe(CO)3(NO)] ( 2b ), [(en)Cu? Co(CO)4] ( 3a ), and [(dien)Cu? Co(CO)4] ( 3b ) are new heterobinuclear metal—metal bonded complexes. The geometry of the [Mn(CO)5]?, [Fe(CO)3(NO)]?, and [Co(CO)4]? ions is distorted only to a less extend in accord with a heteropolar bond to copper.  相似文献   

20.
Although the reaction products are unstable at the reaction temperatures, at a heating rate of 2 deg·min?1 ammonium peroxo vanadate, (NH4)4V2O11, decomposes to (NH4)[VO (O2)2 (NH3)] (above 93°C); this in turn decomposes to (NH4) [VO3 (NH3)] (above 106°C) and then to ammonium metavanadate (above 145°C). On further heating vanadium pentoxide is formed above 320°C. The first decomposition reaction occurs in a single step and the Avrami-Erofeev equation withn=2 fits the decomposition data best. An activation energy of 148.8 kJ·mol?1 and a ln(A) value of 42.2 are calculated for this reaction by the isothermal analysis method. An average value of 144 kJ·mol?1 is calculated for the first decomposition reaction using the dynamic heating data and the transformation-degree dependence of temperature at different heating rates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号