首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The flow of particulate two‐phase flow mixtures occur in several components of solid fuel combustion systems, such as the pressurised fluidised bed combustors (PFBC) and suspension‐fired coal boilers. A detailed understanding of the mixture characteristics in the conveying component can aid in refining and optimising its design. In this study, the flow of an isothermal, dilute two‐phase particulate mixture has been examined in a high curvature duct, which can be representative of that transporting the gas–solid mixture from the hot clean‐up section to the gas turbine combustor in a PFBC plant. The numerical study has been approached by utilising the Eulerian–Lagrangian methodology for describing the characteristics of the fluid and particulate phases. By assuming that the mixture is dilute and the particles are spherical, the governing particle momentum equations have been solved with appropriately prescribed boundary conditions. Turbulence effects on the particle dispersion were represented by a statistical model that accounts for both the turbulent eddy lifetime and the particle transit time scales. For the turbulent flow condition examined it was observed that mixtures with small particle diameters had low interphase slip velocities and low impaction probability with the pipe walls. Increasing the particle diameters (>50 μm) resulted in higher interphase slip velocities and, as expected, their impaction probability with the pipe walls was significantly increased. The particle dispersion is significant for the smaller sizes, whereas the larger particles are relatively insensitive to the gas turbulence. The main particle impaction region, and locations most prone to erosion damage, is estimated to be within an outer duct length of two to six times the duct diameter, when the duct radius of curvature to the duct diameter ratio is equal to unity. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

2.
This paper describes the Eulerian–Lagrangian boundary element model for the solution of incompressible viscous flow problems using velocity–vorticity variables. A Eulerian–Lagrangian boundary element method (ELBEM) is proposed by the combination of the Eulerian–Lagrangian method and the boundary element method (BEM). ELBEM overcomes the limitation of the traditional BEM, which is incapable of dealing with the arbitrary velocity field in advection‐dominated flow problems. The present ELBEM model involves the solution of the vorticity transport equation for vorticity whose solenoidal vorticity components are obtained iteratively by solving velocity Poisson equations involving the velocity and vorticity components. The velocity Poisson equations are solved using a boundary integral scheme and the vorticity transport equation is solved using the ELBEM. Here the results of two‐dimensional Navier–Stokes problems with low–medium Reynolds numbers in a typical cavity flow are presented and compared with a series solution and other numerical models. The ELBEM model has been found to be feasible and satisfactory. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

3.
Understanding the interfacial dynamics and fluid physics associated with the operation of spacecraft is important for scientific as well as engineering purposes. To help address the issues associated with moving boundaries, interfacial dynamics, and spatial‐temporal variations in time and length scales, a 3‐D adaptive Eulerian–Lagrangian method is extended and further developed. The stationary (Eulerian) Cartesian grid is adopted to resolve the fluid flow, and the marker‐based triangulated moving (Lagrangian) surface meshes are utilized to treat the phase boundary. The key concepts and numerical procedures, along with the selected interfacial flow problems are presented. Specifically, the liquid fuel draining dynamics in different flow regimes, and the liquid surface stability under vertically oscillating gravitational acceleration are investigated. Direct assessment of experimental measurement and scaling analysis is made to highlight the computational performance of the present approach as well as the key fluid physics influenced by the given flow parameters. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
现有反应流拉格朗日分析方法在已知粒子速度情况下,求解方法仍有不足。本文针对这一情况,将反解法与自洽检验法相结合,提出了基于最小二乘法的反应流拉格朗日反解法,该方法的理论精度能够实现应力沿路径线的 M阶导数为零(M为迹线数),并且该方法能够满足自洽检验法。为了验证该方法的有效性,利用该方法对一组小隔板冲击起爆试验数据进行了处理,对比了本文方法、试验处理以及传统的反解法处理结果,表明该方法不仅可以适当减小迹线上的偶然误差,还能够使得迹线函数更好地反映各物理量沿迹线的变化性态。  相似文献   

5.
Viscoelastic flows remain a demanding class of problems for approximate analysis, particularly at increasing Weissenberg numbers. Part of the difficulty stems from the convective behavior and in the treatment of the stress field as a primary unknown. This latter aspect has led to the use of higher-order piecewise approximations for the stress approximation spaces in recent finite element research. The computational complexity of the discretized problem is increased significantly by this approach but at present it appears the most viable technique for solving these problems. Motivated by recent success in treating mixed systems and convective problems, we formulate here a least squares finite element method for the viscoelastic flow problem. Numerical experiments are conducted to test the method and examine its strengths and limitations. Some difficulties and open issues are identified through the numerical experiments. We consider the use of high degree elements (p refinement) to improve performance and accuracy.  相似文献   

6.
Eulerian–Lagrangian approaches for dispersed multiphase flows can simulate detailed flow structures with a much higher spatial resolution than the Eulerian–Eulerian approaches. However, there are still unsolved problems regarding the calculation method for accurate two-way interaction, especially on the numerical instability due to the dispersion migration through discrete computational grids. Inadequate solvers sometimes produce false velocity fluctuation which makes the simulation unstable. In this paper, a new calculation method for dispersion-to-continuous phase interaction, which is accompanied by spherical dispersion migration, is proposed. The basic principle of the method is the introduction of Lagrangian filtering functions which convert discrete dispersion volume fractions to a spatially differentiable distribution. The performance of linear, Gaussian and sinewave filtering functions is examined by simple benchmark tests and applied to the simulation of dispersion-generated fluctuation. Using the present method, three-dimensional continuous phase flow structures induced by rising spherical bubbles and/or settling solid particles are demonstrated.  相似文献   

7.
The dispersion of solid particles in a turbulent liquid flow impinging on a centrebody through an axisymmetric sudden expansion was investigated numerically using a Eulerian–Lagrangian model. Detailed experimental measurements at the inlet were used to specify the inlet conditions for two-phase flow computations. The anisotropy of liquid turbulence was accounted for using a second-moment Reynold stress transport model. A recently developed stochastic–probabilistic model was used to enhance the computational efficiency of Lagrangian trajectory computations. Numerical results of the stochastic–probabilistic model using 650 particle trajectories were compared with those of the conventional stochastic discrete-delta-function model using 18 000 particle trajectories. In addition, results of the two models were compared with experimental measurements. © 1998 John Wiley & Sons, Ltd.  相似文献   

8.
A least‐squares meshfree method based on the first‐order velocity–pressure–vorticity formulation for two‐dimensional incompressible Navier–Stokes problem is presented. The convective term is linearized by successive substitution or Newton's method. The discretization of all governing equations is implemented by the least‐squares method. Equal‐order moving least‐squares approximation is employed with Gauss quadrature in the background cells. The boundary conditions are enforced by the penalty method. The matrix‐free element‐by‐element Jacobi preconditioned conjugate method is applied to solve the discretized linear systems. Cavity flow for steady Navier–Stokes problem and the flow over a square obstacle for time‐dependent Navier–Stokes problem are investigated for the presented least‐squares meshfree method. The effects of inaccurate integration on the accuracy of the solution are investigated. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

9.
Two new volume‐of‐fluid (VOF) reconstruction algorithms, which are based on a least‐square fit technique, are presented. Their performance is tested for several standard shapes and is compared to a few other VOF/PLIC reconstruction techniques, showing in general a better convergence rate. The geometric nature of Lagrangian and Eulerian split advection algorithms is investigated in detail and a new mixed split Eulerian implicit–Lagrangian explicit (EI–LE) scheme is presented. This method conserves the mass to machine error, performs better than split Eulerian and Lagrangian algorithms, and it is only slightly worse than unsplit schemes. However, the combination of the interface reconstruction with the least‐square fit and its advection with the EI–LE scheme appears superior to other existing approaches. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

10.
This paper reports a comparative study on the stability limits of nine finite difference schemes to discretize the one‐dimensional unsteady convection–diffusion equation. The tested schemes are: (i) fourth‐order compact; (ii) fifth‐order upwind; (iii) fourth‐order central differences; (iv) third‐order upwind; (v) second‐order central differences; and (vi) first‐order upwind. These schemes were used together with Runge–Kutta temporal discretizations up to order six. The remaining schemes are the (vii) Adams–Bashforth central differences, (viii) the Quickest and (ix) the Leapfrog central differences. In addition, the dispersive and dissipative characteristics of the schemes were compared with the exact solution for the pure advection equation, or simple first or second derivatives, and numerical experiments confirm the Fourier analysis. The results show that fourth‐order Runge–Kutta, together with central schemes, show good conditional stability limits and good dispersive and dissipative spectral resolution. Overall the fourth‐order compact is the recommended scheme. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

11.
A time‐marching formulation is derived from the space–time integrated least squares (STILS) method for solving a pure hyperbolic convection equation and is numerically compared to various known methods. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

12.
The comparison of two theoretical approaches for the numerical investigation of turbulent gas–solid flows with heat transfer in a pipe are presented in this paper. The first approach is based on Eulerian–Eulerian modelling of investigated phenomena, the second one is formulated within the framework of the Eulerian–Lagrangian approach. The verification of numerical models under consideration. Their testing against available experimental data show good prognostic properties of the elaborated theoretical tool for research activities to study new physical fundamentals of turbulent gas-suspended particles flows in pipes and channels.  相似文献   

13.
拉格朗日分析方法已广泛应用于爆炸力学中的小隔板试验分析以及混凝土和紫铜等惰性材料的气体炮试验分析。然而,现有的拉格朗日分析方法在分析过程中需要进行多次积分,导致误差逐次增大。为了解决这个问题,提出多速度计测量的拉格朗日分析方法,该方法由粒子速度计算得到所研究的压力、相对比容及比内能等时程曲线。对比了现有的拉格朗日分析方法和多速度计测量的拉格朗日分析方法的计算精度,结果显示本文方法计算精度较高,是现有的拉格朗日分析方法在应用中的有效改进。  相似文献   

14.
求解Rayleigh阻尼系数的加权最小二乘法   总被引:1,自引:0,他引:1  
在地震反应分析过程中,提出了一种优化方法以解决Rayleigh阻尼系数计算时选择两阶合理参考频率的难题。该方法是以反应谱理论为基础,以结构位移峰值误差最小为目标函数。将位移反应谱用一阶Taylor级数近似计算,从而将目标函数简化为加权最小二乘法的方程。随后以框架结构为例,讨论了模态个数和阻尼比模型对Rayleigh阻尼系数计算的影响,并与传统方法、最小二乘法及基于多参考振型的加权最小二乘法进行比较。计算结果表明,最小二乘法由于忽略了模态贡献的影响,不是计算Rayleigh阻尼系数的合理方法。当模态个数所包含的累积振型参与质量达90%以上,本文方法所得Rayleigh阻尼系数计算结果稳定,结构动力反应的计算精度高。  相似文献   

15.
In this paper, we formulate a level set method in the framework of finite elements‐semi‐Lagrangian methods to compute the solution of the incompressible Navier–Stokes equations with free surface. In our formulation, we use a quasi‐monotone semi‐Lagrangian scheme, which is both unconditionally stable and essentially non oscillatory, to compute the advective terms in the Navier–Stokes equations, the transport equation and the equation of the reinitialization stage for the level set function. The method we propose is quite robust and flexible with regard to the mesh and the geometry of the domain, as well as the magnitude of the Reynolds number. We illustrate the performance of the method in several examples, which range from a benchmark problem to test the volume conservation property of the method to the flow past a NACA0012 foil at high Reynolds number. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

16.
A grid-averaged Lagrangian (GAL) model for dispersed particle motion in multiphase turbulent flow is presented to provide a large eddy simulation (LES) model for multiphase turbulent flow in which a quite large number of particles are involved. The GAL model is based on an averaging operation for a Lagrangian-type equation of motion of a particle over a computational grid volume and a procedure of reallocation of a dispersed particle cloud with its centroid movement to each grid. The model is therefore a mixed Eulerian–Lagrangian model which can effectively reduce computational time compared with existing Lagrangian-type models, without losing the advantage of Lagrangian-type models that they can properly describe the dynamical evolution of particles. Since the GAL model adopts the grid-volume averaging operation it can easily provide an effective SGS model for LES modeling of multiphase turbulent flow. The validity of the multiphase LES model developed, which is named the GAL-LES model, is confirmed through its application to a particle plume, in which the present model is found to simulate large-eddy motion usually observed in a jet and plume, and to give good agreements with experimental data.  相似文献   

17.
A fractional step method for the solution of the steady state incompressible Navier–Stokes equations is proposed in this paper in conjunction with a meshless method, named discrete least‐squares meshless (DLSM). The proposed fractional step method is a first‐order accurate scheme, named semi‐incremental fractional step method, which is a general form of the previous first‐order fractional step methods, i.e. non‐incremental and incremental schemes. One of the most important advantages of the proposed scheme is its capability to use large time step sizes for the solution of incompressible Navier–Stokes equations. DLSM method uses moving least‐squares shape functions for function approximation and discrete least‐squares technique for discretization of the governing differential equations and their boundary conditions. As there is no need for a background mesh, the DLSM method can be called a truly meshless method and enjoys symmetric and positive‐definite properties. Several numerical examples are used to demonstrate the ability and the efficiency of the proposed scheme and the discrete least‐squares meshless method. The results are shown to compare favorably with those of the previously published works. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
19.
The fully non‐linear free‐surface flow over a semi‐circular bottom obstruction was studied numerically in two dimensions using a mixed Eulerian–Lagrangian formulation. The problem was solved in the time domain that allows the prediction of a number of transient phenomena, such as the generation of upstream advancing solitary waves, as well as the simulation of wave breaking. A parametric study was performed for a range of values of the depth‐based Froude number up to 2.5 and non‐dimensional obstacle heights, α up to 0.9. When wave breaking does not occur, three distinct flow regimes were identified: subcritical, transcritical and supercritical. When breaking occurs it may be of any type: spilling, plunging or surging. In addition, for values of the Froude number close to 1, the upstream solitary waves break. A systematic study was undertaken to define the boundaries of each type of breaking and non‐breaking pattern and to determine the drag and lift coefficients, free‐surface profile characteristics and transient behavior. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

20.
The solution of fluid flow problems exhibits a singular behaviour when the conditions imposed on the boundary display some discontinuities or change in type. A treatment of these singularities has to be considered in order to preserve the accuracy of high‐order methods, such as spectral methods. The present work concerns the computation of a singular solution of the Navier–Stokes equations using the Chebyshev‐collocation method. A singularity subtraction technique is employed, which amounts to computing a smooth solution thanks to the subtraction of the leading part of the singular solution. The latter is determined from an asymptotic expansion of the solution near the singular points. In the case of non‐homogeneous boundary conditions, where the leading terms of the expansion are completely determined by the local analysis, the high accuracy of the method is assessed on both steady and unsteady lid‐driven cavity flows. An extension of this technique suitable for homogenous boundary conditions is developed for the injection of fluid into a channel. The ability of the method to compute high‐Reynolds number flows is demonstrated on a piston‐driven two‐dimensional flow. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号