首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Kinetics of the OsO4 catalysed oxidation of the above mentioned cyclic alcohols by hexacyanoferrate(III) in alkaline medium has been studied. The effect of variation of the concentration of osmium tetroxide on the reaction rate shows the direct dependence. The first order kinetics observed at lower concentration of the organic substrates tends towards zero order at higher concentrations. Similarly zero order kinetics was also observed with respect to hexacyanoferrate(III). The order with respect to hydroxide ion is unity at its lower concentrations and changing towards lower order at higher concentrations. On the basis of these results a probable reaction mechanism has been set out and the oxidation products have been confirmed.  相似文献   

2.
Summary The kinetics of the ruthenium(III)-catalysed oxidation of aminoalcoholsviz. 2-aminoethanol and 3-aminopropanol by alkaline hexacyanoferrate(III) has been studied spectrophotometrically. The reactions are rapid initially, then follow a second order rate dependence with respect to each of the catalyst and the oxidant. The second order rate dependence with respect to ruthenium(III) was observed for the first time. The order in [Aminoalcohol] and [OH] is unity in each case. A suitable mechanism, consistent with the observed kinetic data is postulated.  相似文献   

3.
A kinetic study of the oxidation of allyl alcohol by potassium hexacyanoferrate (III) in the presence of palladium (II) chloride is reported. The reaction was observed by measuring the disappearance of the potassium hexacyanoferrate (III) spectrophotometrically. The reaction is first order with respect to allyl alcohol and palladium (II) chloride, inverse second order with respect to [Cl?], and zero order with respect to potassium hexacyanoferrate (III). The rate is found to increase linearly with hydroxyl ion concentration.  相似文献   

4.
The oxidation of l-phenylalanine by hexacyanoferrate(III) (abbreviated as HCF) catalyzed by Ir(III) has been studied spectrophotometrically at 35 °C and at a constant ionic strength of 0.50 mol dm−3. The main oxidation product was identified as phenylpyruvic acid by physico-chemical and spectroscopic methods. The stoichiometry was found to be 2:1, i.e. 2 mol of hexacyanoferrate(III) reacted with 1 mol of phenylalanine. The reaction was first order with respect to both HCF and alkali concentration. The order with respect to [Phe] changed from first to zero as the concentration was increased. The effect of ionic strength was also investigated. Thermodynamic parameters were evaluated by studying the reaction at four different temperatures between 35 and 50 °C. Based on the experimental results, a suitable mechanism involving complex formation has been proposed.  相似文献   

5.
The oxidation of diethanolamine by hexacyanoferrate(III) in alkaline medium has been found to be of first order with respect to diethanolamine, oxidant (at low concentrations) and hydroxyl ions; it tends to zero at higher concentrations of the oxidant. The effect of addition of sodium chloride, potassium sulphate and sodium acetate is positive, while that of hexacyanoferrate(II) ion is negligible. A mechanism involving the formation of an intermediate amine anion has been proposed.  相似文献   

6.
The kinetics of oxidation of sulfanilic acid (p-aminobenzenesulfonic acid) by hexacyanoferrate(III) in alkaline medium was studied spectrophotometrically. The reaction showed first order kinetics in hexacyanoferrate(III) and alkali concentrations and an order of less than unity in sulfanilic acid concentration (SAA). The rate of reaction increases with increase in alkali concentration. Increasing ionic strength increases the rate but the dielectric constant of the medium has no significant effect on the rate of the reaction. A retarding effect was observed by one of the products i.e. hexacyanoferrate(II) (HCF(II)). A mechanism involving the formation of a complex between sulfanilic acid and hexacyanoferrate(III) has been proposed. The reaction constants involved in the mechanism are evaluated. There is a good agreement between the observed and calculated rate constants under different experimental conditions. Investigations at different temperatures allowed the determination of the activation parameters with respect to the slow step of the proposed mechanism.  相似文献   

7.
Kinetic studies of the hexacyanoferrate(III) oxidation of 1-propanol and 2-propanol have been carried out in aqueous alkaline medium. The reaction velocity is of first order with respect to alcohols, alkali and hexacyanoferrate(III). The kinetic data suggest that the oxidation involves the formation of an anion of the substrate undergoes oxidation with hexacyanoferrate(III) via charge transfer process. The free radical thus produced is further oxidised to form the final products.
Der Mechanismus der Hexacyanoferrat(III)-Oxidation von 1-Propanol und 2-Propanol in alkalischem, wäßrigen Milieu
Zusammenfassung Kinetische Studien ergaben für die Oxidation Abhängigkeiten erster Ordnung sowohl für die Alkohole, als auch für OH- und Hexacyanoferrat(III). Die Daten legen nahe, daß das Substrat-Anion zunächst unter einfacher Ladungsübertragung oxidiert wird, wobei das gebildete freie Radikal weiterer Oxidation zu den endgültigen Reaktionsprodukten unterliegt.
  相似文献   

8.
The Cu(II)‐catalyzed oxidation of ciprofloxacin (CIP) by hexacyanoferrate(III) (HCF) has been investigated spectrophotometrically in an aqueous alkaline medium at 40°C. The stoichiometry for the reaction indicates that the oxidation of 1 mol of CIP requires 2 mol of HCF. The reaction exhibited first‐order kinetics with respect to [HCF] and less than unit order with respect to [CIP] and [OH]. The products were also identified on the basis of stoichiometric results and confirmed by the characterization results of LC‐MS and FT‐IR analysis. All the possible reactive species of the reactants have been discussed, and a most probable kinetic model has been envisaged. The activation parameters with respect to the slow step of the mechanism were computed, and thermodynamic quantities were also determined.  相似文献   

9.
A kinetic study of the hexacyanoferrate(III)-cyanide redox reaction has been made in connection with development of a new catalytic method for copper. The reaction kinetics change with time from first- to second-order dependence with respect to hexacyanoferrate(III). The reaction is nearly inverse first-order with respect to hexacyanoferrate(II) and first-order with respect to cyanide. The reaction shows a strong positive primary salt effect, but a very small increase in the reaction rate with temperature is found. A parallel reaction proceeds with a first-order dependence with respect to hydroxide. A tentative mechanism is proposed for the first reaction, involving the formation of cyanogen radicals. The second reaction corresponds to the well-known decomposition of hexacyanoferrate(III) in alkaline medium. The catalysed reaction exhibits similar kinetics with respect to hexacyanoferrate(II) and (III) but is zero-order with respect to cyanide and hydroxide and first-order with respect to catalyst. The proposed mechanism involves two consecutive interactions of the hexacyanoferrate(III) with copper(I) and with copper(II) cyanide complexes respectively, followed by a 2-electron oxidation of a co-ordinatively bridging cyanide group.  相似文献   

10.
The effect of anionic surfactant sodium dodecyl sulfate (SDS) on the rate of oxidation of levothyroxine (LVT) by hexacyanoferrate(III) in alkaline medium has been investigated spectrophotometrically at different temperatures. The reaction follows a complex kinetics showing first order dependence of rate with respect to both alkali and LVT. The effect of SDS on the rate of reaction has been observed at the critical miceller concentration of the surfactant. indicating binding of the substrate with the surfactant micelle. The binding parameters have also been evaluated using the Menger and Portnoy model.  相似文献   

11.
The osmium(VIII)-catalyzed oxidation of D -proline and L (–)-methionine by alkaline hexacyanoferrate(III) has been studied spectrophotometrically. The reactions follow kinetics different from those of the oxidation of many amino acids investigated earlier, being first order in hexacyanoferrate(III) and osmium(VIII). The order in proline or methionine and OH? decreases from unity to zero at higher concentrations of proline or methionine and OH?, respectively. A mechanism consistent with the kinetic data is proposed and discussed.  相似文献   

12.
The complex (Trpy)RuCl3 (Trpy = 2,2′:6′,2″‐terpyridine) reacts with alkaline hexacyanoferrate(III) to form a terpyridyl ruthenium(IV)‐oxo complex that catalyzes the oxidation of 2‐propanol and benzyl alcohol by alkaline hexacyanoferrate(III). The reaction kinetics of this catalytic oxidation have been studied photometrically. The reaction rate shows a first‐order dependence on [RU(IV)], a zero‐order dependence on [hexacyanoferrate(III)], a fractional order in [substrate], and a fractional inverse order in [HO]. The kinetic data suggest a reaction mechanism in which the catalytic species and its protonated form oxidize the uncoordinated alcohol in parallel slow steps. Isotope effects, substituent effects, and product studies suggest that both species oxidize alcohol through similar pericyclic processes. The reduced catalytic intermediates react rapidly with hexacyanoferrate(III) and hydroxide to reform the unprotonated catalytic species. © 2000 John Wiley & Sons, Inc. Int J Chem Kinet 32: 760–770, 2000  相似文献   

13.
The kinetics of the Os(VIII)-catalyzed oxidation of glycine, alanine, valine, phenylalanine, isoleucine, lycine, and glutamic acid by alkaline hexacyanoferrate(III) reveal that these reactions are zero order in hexacyanoferrate(III) and first order in Os(VIII). The order in amino acid as well as in alkali is 1 at [amino acid] ?2.5 × 10?2M and [OH?] ?1.3 × 10?M, but less than unity at higher concentrations of amino acids or alkali. The active oxidizing species under the experimental conditions is OsO4(H2O) (OH)?. The ferricyanide is merely used up to regenerate the Os(VIII) species from Os(VI) formed during the reaction. The structural influence of amino acids on the reactivity has been discussed. The amino acids during oxidation are shown to be degraded through intermediate keto acids. The kinetic data are accommodated by considering the interaction between the conjugate base of the amino acids and the active oxidizing species of Os(VIII) to form a transient complex in the primary rate-determining step. The catalytic effect of hexacyanoferrate(II) has been rationalized.  相似文献   

14.
Oxidation of the macrocyclic Cr(III) complex cis-[Cr(cycb)(OH)2]+, where cycb=rac-5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane, by an excess of the hexacyanoferrate(III) in basic solution, slowly produces Cr(V) species. These species, detected using e.p.r. spectroscopy, are stable under ambient conditions for many hours, and the hyperfine structure of the e.p.r. spectrum is consistent with the interaction of the d-electron with four equivalent nitrogen nuclei. Electro-spray ionization mass spectrometry suggests a concomitant oxidation of the macrocyclic ligand, in which double bonds and double bonded oxygen atoms have been introduced. By comparison basic chromate(III) solutions are oxidized rapidly to chromate(VI) by hexacyanoferrate(III) without any detectable generation of stable Cr(V) intermediates.Kinetics of oxidation of the macrocyclic Cr(III) complex in alkaline solution has been studied under excess of the reductant. Rate determining formation of Cr(IV) by a second order process involving the Cr(III) and the Fe(III) reactants is seen. This reaction also involves a characteristic higher order than linear dependence on the hydroxide concentration. Reaction mechanisms for the processes, including oxidation of the coordinated macrocyclic ligand – under excess of the oxidant- are proposed.  相似文献   

15.
The oxidation kinetics of 2‐butanol by alkaline hexacyanoferrate(III) catalyzed by sodium ruthenate has been studied spectrophotometrically. The initial rates method was used for kinetic analysis. The reaction rate shows a fractional‐order in [hexacyanoferrate(III)] and [substrate] and a first‐order dependence on [Ru(VI)]. The dependence on [OH] is rather more complicated. The kinetic data suggest a reaction mechanism involving two active catalytic species. Each one of these species forms an intermediate complex with the substrate. The attack of these complexes by hexacyanoferrate(III), in a slow step, produces ruthenium(V) complexes which are oxidized in subsequent steps to regenerate the catalyst species. © 1999 John Wiley & Sons, Inc. Int J Chem Kinet 31: 1–9, 1999  相似文献   

16.
The kinetics of the Ru(VI)‐catalyzed oxidation of benzyl alcohol by hexacyanoferrate(III), in an alkaline medium, has been studied using a spectrophotometric technique. The initial rates method was used for the kinetic analysis. The reaction is first order in [Ru(VI)], while the order changes from one to zero for both hexacyanoferrate(III) and benzyl alcohol upon increasing their concentrations. The rate data suggest a reaction mechanism based on a catalytic cycle in which ruthenate oxidizes the substrate through formation of an intermediate complex. This complex decomposes in a reversible step to produce ruthenium(IV), which is reoxidized by hexacyanoferrate(III) in a slow step. The theoretical rate law obtained is in complete agreement with all the experimental observations. © 2002 Wiley Periodicals, Inc. Int J Chem Kinet 34: 421–429, 2002  相似文献   

17.
An anionic gemini surfactant viz. sodium salt of bis(1-dodecenylsuccinamic acid) has been synthesized. Conductivity and surface tension measurements were performed in order to characterize the synthesized surfactant. The foaming power and contact angle have also been determined. Micellar effect of synthesized gemini surfactant on the rate of oxidation of reducing sugars (viz. glucose, fructose and xylose) by alkaline hexacyanoferrate(III) has been studied in the temperature range (40–60 °C). It has been observed that reducing sugar associates/binds with surfactant micelle to form mixed aggregate which is resistant to react with hexacyanoferrate(III). The binding parameters have also been evaluated using Menger and Portnoy model.  相似文献   

18.
Kinetics of oxidation of xylitol and galactitol by hexacyanoferrate(III) ion in aqueous alkaline medium is reported. The reaction rate is of first order with respect to hexacyanoferrate(III) in each substrate. The reaction is first order at lower concentrations of xylitol and galactitol and tends towards zero order as the concentration increases. Similarly first order kinetics was obtained with respect to hydroxide ion at lower concentrations and tends to lower order at higher concentration in the oxidation of xylitol; in the oxidation of galactitol the reaction is first order with respect to hydroxide ion even up to manyfold variation. The course of reaction has been considered to proceed through the formation of an activated complex between [K Fe(CN)6]2– and substrate anion which decomposes slowly into radical and [K Fe(CN)6]3–. A probable reaction mechanism is proposed.
Kinetik und Mechanismus der Oxidation von Xylit und Galaktit mit Hexacyanoferrat(III) in wäßriger, alkalischer Lösung
Zusammenfassung Das Geschwindigkeitsgesetz der Titelreaktion ist in beiden Fällen erster Ordnung bezüglich Hexacyanoferrat(III). Die Oxidation ist erster Ordnung bei niedrigen Konzentrationen von Xylit und Galaktit und geht bei Erhöhung der Konzentration gegen null. In gleicher Weise wurde eine Kinetik erster Ordnung bezüglich Hydroxyl bei niedrigen Konzentrationen und eine erniedrigte Ordnung bei höheren Konzentrationen für die Oxidation von Xylit beobachtet; bei Galaktit bleibt die Oxidation auch bei höheren Hydroxyl-Konzentrationen erster Ordnung. Es wird angenommen, daß die Reaktion über einen aktivierten Komplex zwischen [KFe(CN)6]2– und dem Substrat-Anion verläuft; dieser Komplex zerfällt in [KFe(CN)6]3– und ein Substrat-Radikal. Ein möglicher Reaktionsmechanismus wird vorgeschlagen.
  相似文献   

19.
Verma KK 《Talanta》1979,26(4):277-282
Four analytical reagents, tetrathionate, iron(III), cystine and hexacyanoferrate(III) have been tested with respect to their specificity for oxidation of thiols to disulphides. Of a number of thiols studied, most have a strong tendency to oxidize beyond the disulphide stage with several of the commonly employed reagents. Tetrathionate, cystine and hexacyanoferrate(III) function in phosphate buffer of pH 7, but iron(III) does not require rigid control of pH, although the solution should be only feebly acidic. The reagents were used in excess and the thiosulphate or cysteine formed in the reaction of thiols with tetrathionate or cystine respectively was determined. The residual iron(III) was measured by adding ascorbic acid or mercaptoacetic acid and titrating with 2,6-dichlorophenolindophenol or iodine monochloride respectively; surplus hexacyanoferrate(III) was back-titrated with ascorbic acid. All four reagents react selectively with thiols even in the presence of several possible interfering substances and afford results that are accurate and precise.  相似文献   

20.
The kinetics of ruthenium(VI) catalyzed oxidation of 2-methoxyethanol by hexacyanoferrate(III) ion in an aqueous alkaline medium at constant ionic strength shows zero order dependence on hexacyanoferrate(III) and first order dependence on Ru(VI). Dependence of substrate concentration shows a Michaelis – Menten type behaviour. The rate increases with the decrease in alkali concentration. A reaction mechanism involves the formation of an intermediate complex between the substrate and ruthenium(VI). This complex decomposes slowly, producing ruthenium(IV), which is reoxidized by hexacyanoferrate(III) in subsequent steps. The theoretical rate law obtained is in complete agreement with the experimental observations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号