首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lauryl methacrylate‐based (LMA) monolithic columns for CEC, prepared using either thermal initiation or by UV‐irradiation in the presence of AIBN have been compared. Thermal polymerization was carried out at 70°C for 20 h. For UV initiation, the effects of the time exposure to UV light and irradiation energy were investigated. For each initiation process, the influence of composition of porogenic solvent (1,4‐butanediol/1‐propanol ratio) on the physical and electrochromatographic properties of the resulting monoliths was also evaluated. Photochemically lauryl methacrylate stationary phases initiated showed higher permeabilities and better efficiencies than those prepared by thermal initiation. After optimization of polymerization mixture, photopolymerized columns provided a permeability of 4.25×10?13 m2 and a minimum plate height of 13.4 μm for a mixture of polycyclic aromatic hydrocarbons. Similar column‐to‐column and batch‐to‐batch reproducibilities, with RSD values below 11.6 and 11.0 % for the thermal‐ and UV‐initiated columns, respectively, were obtained.  相似文献   

2.
A negative type photosensitive polyimide with alicyclic moiety (NPI) was synthesized from 5‐(2,5‐dioxotetrahydrofuryl)‐3‐methyl‐3‐cyclohexene‐1,2‐dicarboxylic anhydride and 4,4‐diaminobenzophenone by one‐step polymerization in m‐cresol. Properties of the polyimides were characterized and a photo‐crosslinking mechanism was investigated using DEPT 13C‐NMR and FT‐IR spectroscopy. The negative polyimide showed good photosensitivity on exposure to UV light from a mercury xenon lamp. The polyimide showed remarkable solubility difference after photo‐ irradiation with an exposure dose of 500 mJ/cm2. The resulting negative pattern of the photo‐cured NPI exhibited 10 μm resolution. Glass transition temperature of the photo‐crosslinked polyimide was about 307°C, which increased by 10°C compared to that of the polyimide before UV exposure. Transmittance of NPI after photo‐irradiation was about 87% at 500 nm. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

3.
A facile approach for synthesis of hyperbranched polycarbosilane from AB2 monomer via UV‐activated hydrosilylation is presented in this communication. The polymerization process was monitored using real‐time FTIR spectroscopy and the resulting hyperbranched polycarbosilanes were characterized using 1H‐NMR, 13C‐NMR, 29Si‐NMR and SEC/MALLS. It is found that hyperbranched polycarbosilane can be synthesized from methyldiallylsilane via UV‐activated hydrosilylation with bis(acetylacetonato)platinum(II) as catalyst. The polymerization activated by UV irradiation was much faster than that under thermal conditions. The similar degree of branching, average number of branch units and the exponent of the Mark–Houwink equation demonstrate that the hyperbranched polycarbosilane synthesized via UV‐activated polyhydrosilylation possesses almost the same branching structure as that synthesized via thermal‐activated polyhydrosilylation. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
A 1 week UV‐exposure measurement and outdoor‐activity pattern survey was conducted for elementary school children for four seasons at five sites in Japan, i.e. Sapporo (43°05′N, altitude 40 m), Tsukuba (36°05′N, 20 m), Tokyo (35°40′N, 45 m), Miyazaki (31°60′N, 40 m) and Naha (26°10′N, 5 m), and UV exposure was measured directly and estimated using outdoor‐activity records. The study site with largest UV exposure was Miyazaki, a southern rural area. Comparing the results for boys and girls, UV exposure was larger in boys. UV exposure was large in spring and summer and small in winter. The total amount of UV exposure in spring and summer contributed 57.7–73.4% of total exposure for the year. As a whole, 8.1% and 1.8% of the schoolchildren were exposed to more than 1 minimum erythemal dose (MED) and 2 MED of solar UV in a day, respectively. The estimated yearly UV exposure ranged from 49 207 J/m2 in Miyazaki to 31 520 J/m2 in Tsukuba. The actual UV exposure correlated to potential UV exposure, estimated using outdoor‐activity records and ambient UV irradiance, but the ratio differed by season and site. The yearly average of percent UV exposure to ambient UV on a horizontal plane ranged from 9.9% in Tokyo to 4.0% in Naha. In the questionnaire survey on outdoor‐activity pattern, a short question “How long did you spend time outdoors between 0900 and 1500 h?” gives the best estimates of UV exposure.  相似文献   

5.
This study aimed at polymerization of methyl methacrylate with novel catalysts in the atom transfer radical polymerization (ATRP) condition at 90 °C. This was accomplished using CuBr/N-(2-aminoethyl)-3-aminopropyltrimethoxysilane (CuBr–AEAPTMS) as a homogeneous catalyst and one time with CuBr@AEAPTMS/SBA-15 as a heterogeneous catalyst. Catalysts were characterized using TGA, FT-IR, and UV–Vis spectroscopy. The structural analysis of the polymer was carried out by 13C NMR spectroscopy and GPC. Three characteristic parts of polymer produced by ATRP method including the initiator, monomer units, and end group was shown in 13C NMR spectra. In addition, the presence of C–Br unit showed that the polymerization process is alive. The 1H NMR analysis was used for kinetic investigation of methyl methacrylate polymerization with homogeneous and heterogeneous catalysts that showed high monomer conversion (98 and 90% after 35 min, respectively) and good control of molecular weight with a dispersity (Р= 1.5–1.7). In addition, the plot of ln ([monomer]0/[monomer] t ) versus time gave linear relationships indicating a constant concentration of the propagating species throughout the polymerization. Finally, the results of the polymerization using heterogeneous catalyst compared with homogeneous catalyst revealed that it was according to ATRP method.  相似文献   

6.
Liquid crystal is a material which is between solid and liquid phase and commonly called mesophase. Blends of liquid crystal are of great interest because of their unique optical properties. Blending in this study using two monomers of liquid crystal were cholesteryl acrylate and methyl phenyl benzoyl acrylate. The polymerization process using uv curing techniques by irradiation UV ray and without irradiation UV ray. Polymerization of blending liquid crystal acrylate using initiator 2-hydroxy-2-methyl-1-phenylpropane. Based on peak at GPC curve of polymerization by irradiation UV ray, type of that polymer is copolymer. Therefore the polymerization without UV ray, type of that polymer is homopolymer. SEM images of liquid crystal acrylate polymer showed lamella chain models that are characteristic of a polymer chains. Type of polymer liquid crystal acrylate was the type of Side Chain Liquid Crystalline Polymers (SCLCPs). Therefore acrylate polymer liquid crystal in this research has semi-crystalline phase, which contained crystalline phase and amorphous phase on the XRD pattern. The results of FT-IR spectroscopic characterization of the two monomers showed a peak at the wave number of 1600.43 cm -1 and 1622.86 cm-1 which indicates a double bond (C=C) were obtained from acrylation. While the spectroscopy on the product blending the wave number of the peak regions is reduced that shows that carbon double bonds (C=C) in the acrylate group has polymerized. It also strengthened with a very sharp peak for CC functional groups on the wave number of 2855.15 cm-1. The results of this study indicate that the liquid crystal polymer acrylic polymerization results with radiation UV ray and without UV ray, respectively absorb light in the UV wavelength region 363 nm and 351 nm.  相似文献   

7.
The aim of this study was to analyze the photostability and phototoxicity mechanism of anthracene (ANT) in a human skin epidermal cell line (HaCaT) at ambient environmental intensities of sunlight/UV‐R (UV‐A and UV‐B). Photomodification of ANT under sunlight/UV‐R exposure produced two photoproducts, anthrone and 9,10 anthracenedione. Generation of 1O2, O2?? and ?OH was measured under UV‐R/sunlight exposure. Involvement of reactive oxygen species (ROS) was further substantiated by their quenching with free radical quenchers. Photodegradation of 2‐deoxyguanosine and linoleic acid peroxidation showed that ROS were mainly responsible for ANT phototoxicity. ANT generates significant amount of intracellular ROS in cell line. Maximum cell viability (85%) was reduced under sunlight exposure (30 min). Results of MTT assay accord NRU assay. ANT (0.01 μg mL?1) induced cell‐cycle arrest at G1 phase. RT‐PCR demonstrated constitutive inducible mRNA expression of CYP 1A1 and 1B1 genes. Photosensitive ANT upregulates CYP 1A1 (2.2‐folds) and 1B1 (4.1‐folds) genes. Thus, the study suggests that ROS and DNA damage were mainly responsible for ANT phototoxicity. ANT exposure may be deleterious to human health at ambient environmental intensities reaching the earth’s surface through sunlight.  相似文献   

8.
Three novel types of thiophene‐containing oxime sulfonates with a big π‐conjugated system were reported as non‐ionic photoacid generators. The irradiation of the newly synthesized photoacid generators using near UV–visible light‐emitting diodes (LEDs) (365–475 nm) results in the cleavage of two weak N O bonds in single molecules, which lead to the generation of different sulfonic acids in good quantum and chemical yields. The mechanism for the N O bond cleavage for acid generation was supported by the UV–visible spectra and real‐time 1H NMR spectra. They are developed as high‐performance photoinitiators without any additives for the cationic polymerization of epoxide and vinyl ether upon exposure to near‐UV and visible LEDs (365–475 nm) at low concentration. In the field of photopolymerization, especially visible light polymerization, it has great potential for application. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 776–782  相似文献   

9.
Solar ultraviolet‐B radiation (UVB) is essential for epidermal vitamin D production. We aimed to quantitate the relationship between personal solar UV exposure and serum 25hydroxy vitamin D (25[OH]D) concentration. Blood was collected for 25(OH)D analysis in 207 South Australian adults aged 27–61 years. At the time of blood collection, each participant completed a questionnaire, which included a calendar for recall of sun exposure in the preceding 16 weeks. We examined the association between solar UV exposure and serum 25(OH)D graphically from smoothed scatter plots, and modeled it using multiple linear regression, with age, sex and body mass index as covariates. Estimated erythemal solar UV exposure in the 6 weeks before blood collection best predicted serum 25(OH)D concentrations. Serum 25(OH)D rose with increasing personal solar UV exposure to a maximum of about 89 nmol L?1 at an estimated mean weekly solar erythemal UV exposure of about 1230 mJ cm?2. The maximum was the same after accounting for clothing coverage and was reached at an estimated whole body equivalent exposure to ambient UV of ca 700 mJ cm?2. These results suggest that an average maximum serum 25(OH)D of ca 89 nmol L?1 is achieved from sun exposure in a healthy Australian adult population.  相似文献   

10.
A versatile approach to the synthesis of novel polyamidoamine (PAMAM) side‐chain dendritic polyester (SCDPE) possessing azobenzene motifs in the polymeric core is described and displayed reversible cis–trans (E/Z) isomerization upon exposure to UV light. A polymerization reaction was conducted in solution using ester‐terminated PAMAM dendritic diol ( 1a , G 3.5) and azobenzene dicarboxylic acid chloride in the presence of triethylamine. PAMAM dendritic diol 1a as well as SCDPE ( 1 ) were thoroughly characterized by means of IR and NMR (1H and 13C) spectroscopies. The intrinsic viscosity of 1 at 36 °C in CHCl3 was found to be 0.38 dl/g. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 4182–4188, 2001  相似文献   

11.
Abstract

The characterizations of poly(N-vinylcarbazole) (PVCZ) obtained via asymmetrical polymerization have been studied by using 1H-NMR spectrum, UV spectrum, DSC, and GPC analysis. The tacticities, i.e., the isotactic diad mole fractions, were found to increase when using the initiator AIBN to the catalyst (?)Sp?+(+)CSA??, and the extinction coefficients to decrease. Bimodal molecular weight distribution (MWD)s were caused by two propagating species of the free ions and the ion-pairs during the polymerization process.  相似文献   

12.
Two D‐π‐A‐type 2,2,2‐trifluoroacetophenone derivatives, namely, 4′‐(4‐( N,N‐diphenyl)amino‐phenyl)‐phenyl‐2,2,2‐trifluoroacetophenone (PI‐Ben) and 4′‐(4‐(7‐(N,N‐diphenylamino)‐9,9‐dimethyl‐9H‐fluoren‐2‐yl)‐phenyl‐2,2,2‐trifluoroacetophenone (PI‐Flu), are developed as high‐performance photoinitiators combined with an amine or an iodonium salt for both the free‐radical polymerization of acrylates and the cationic polymerization of epoxides and vinyl ether upon exposure to near‐UV and visible light‐emitting diodes (LEDs; e.g., 365, 385, 405, and 450 nm). The photochemical mechanisms are investigated by UV‐Vis spectra, molecular‐orbital calculations, fluorescence, cyclic voltammetry, photolysis, and electron‐spin‐resonance spin‐trapping techniques. Compared with 2,2,2‐trifluoroacetophenone, both photoinitiators exhibit larger redshift of the absorption spectra and higher molar‐extinction coefficients. PI‐Ben and PI‐Flu themselves can produce free radicals to initiate the polymerization of acrylate without any added hydrogen donor. These novel D‐π‐A type trifluoroacetophenone‐based photoinitiating systems exhibit good efficiencies (acrylate conversion = 48%–66%; epoxide conversion = 85%–95%; LEDs at 365–450 nm exposure) even in low‐concentration initiators (0.5%, w/w) and very low curing light intensities (1–2 mW cm?2). © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1945–1954  相似文献   

13.
Biofilms are difficult to eradicate due to a protective architecture and create major challenges in patient care by diminishing both host immune response and therapeutic approaches. This study investigated a new strategy for treating surface‐attached biofilms by delivering germicidal UV through a material surface in a process referred to as “inside‐out sterilization” (IOS). Mature Pseudomonas aeruginosa (ATCC® 27853?) biofilms were irradiated with up to 1400 mJ cm?2 of germicidal UV from both ambient and IOS configurations. The lethal dose for the ambient exposure group was 461 mJ cm?2 95% CI [292, 728] compared to the IOS treatment group of 247 mJ cm?2 95% CI [187, 325], corresponding to 47% less UV dosage for the IOS group (P < 0.05). This study demonstrated that with IOS, a lower quantal dosage of UV energy is required to eradicate biofilm than with ambient exposure by leveraging the organizational structure of the biofilm.  相似文献   

14.
Hydrazone substituted oligophenol was synthesized via enzymatic oxidative polymerization of (E)-2-((2-phenylhydrazono)methyl)phenol. Enzymatic polymerization catalyzed by Horseradish peroxidase (HRP) enzyme and H2O2 oxidizer yielded oligophenol with hydrazone functionality on the side-chain. Effects of various factors including solvent system, reaction pH and temperature on the polymerization were studied. Optimum polymerization conditions with the highest yield (84%) and molecular weight (Mn = 8 × 103, DP ≈ 37, PDI = 1.11) was achieved using MeOH/pH 6.0 buffer (1: 1 vol %) at 25°C in 24 h under air. Synthesized oligomer was characterized by 1H and 13C NMR, FTIR, UV–Vis spectroscopy, GPC, cyclic voltammetry and thermogravimetric analyses. The polymerization involved hydrogen elimination from the monomer, and terminal units of the oligomer structure consisted of phenolic hydroxyl (–OH) end groups. The oligomer backbone possessed phenylene and oxyphenylene repeat units. The resulting oligomer was completely soluble in common organic solvents. The oligomer was thermally robust and exhibited 5% mass loss at 375°C and 50% mass loss at 440°C.  相似文献   

15.
A method was developed for the fabrication of microfluidic paper-based analytical devices (μPAD). This method was based on the silanisation of cellulose in filter paper using alkyltrimethoxysilane coupled with UV radiation. The filter paper sheet was hydrophobised by immersion in an octadecyltrimethoxysilane/heptane (OTMS/heptane) solution (0.25 vol. %) containing 5 vol. % of ethyl acetate (EtOAc). The hydrophobic-hydrophilic contrast was generated on the filter paper after the hydrophobised paper sheet was exposed to UV light with a metal mask creating the desired pattern on the sheet. The exposed area was oxidised to create a hydrophilic area, while the hydrophobic area was protected by the metal mask. The optimal conditions for the fabrication of μPAD were studied; these included ethyl acetate concentration (CEtOAc), immersion time, octadecyltrimethoxysilane concentration (COTMS) and exposure time. This method is cost-effective and simple. In addition, different functional groups could be further grafted for various assay purposes. To demonstrate the feasibility of the μPAD in analytical applications, a flower-shaped μPAD with eight channels and eight detection units was fabricated and used to determine the nitrite content in pickled vegetables. The nitrite content (124 µg g?1) in the sample determined by this method compared favourably with that measured using a standard method (137 µg g?1).  相似文献   

16.
This investigation reports the polymerization of hexyl acrylate (HA) using atom transfer radical polymerization technique and subsequently the preparation of its di‐ and triblock copolymers with methyl methacrylate. Atom transfer radical polymerization of HA was investigated using different initiators and CuBr or CuCl as catalyst in combination with varying ligands, e.g., 2,2′‐bipyridine and N,N,N′,N″,N″‐pentamethyl diethylenetriamine. Reaction parameters were adjusted to successfully polymerize HA with well‐defined molecular weights and narrow polydispersity indices. The polymerization was better controlled by the addition of polar solvents, which created a homogeneous catalytic system. UV–vis analysis showed that the polar solvent, acetone coordinated with copper (I), changes the nature of the copper catalyst, thereby influencing the dynamic equilibrium of activation–deactivation cycle. This resulted in improved control over polymerization as well as in lowering the polydispersity indices, but at the cost of polymerization rate compared with the bulk process. The presence of ? Br end group in the polymer chains was confirmed by 1H NMR as well as MALDI‐TOF mass analysis. In addition, poly(hexyl acrylate) was used as macroinitiator to prepare various “all‐acrylate” block (diblock, triblock) copolymers that were characterized by GPC and 1H NMR. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 3499–3511, 2008  相似文献   

17.
This study explored the abilities of 1‐(9‐anthrylmethyloxy)‐2‐pyridone and related compounds, which absorb long‐wavelength light (>350 nm), to photochemically initiate radical and cationic polymerizations. It was found that the irradiation of the title compounds initiates the radical polymerization of styrene whereas the cationic polymerization of oxetane proceeds in the presence of these photoinitiators to a negligible extent. The behavior of 9‐anthrylmethyloxyl and amidyl radicals in the photopolymerization process of styrene was discussed based on 1H NMR, UV, and fluorescence spectral data. In addition, the photoinitiation ability of the anthrylmethyloxyl end group was also investigated by using its model compound. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2859–2865, 2004  相似文献   

18.
A wholly aromatic polypyrene was synthesized by direct chemical oxidative polymerization of pyrene with ferric chloride as oxidant in hexane/nitromethane. Successful synthesis of polypyrene was thoroughly confirmed by IR, UV/Vis, 1D 1H NMR, 2D 1H–1H COSY, 2D 1H–13C HSQC, MALDI‐TOF MS, elemental analysis, and X‐ray diffraction methods. The results indicated that the polypyrene was formed mainly through dehydro coupling between 2‐ or 1‐ and 2′‐ or 1′‐positions on pyrene rings having a degree of polymerization of around 24. The polypyrene was purified and then separated into THF‐soluble (ca. 10 %) and THF‐insoluble (ca. 90 %) fractions. Compared with insulating pyrene monomer, the polypyrene is a controllably conducting polymer that has low conductivity of 3.4×10?8 S cm?1 in its virgin state, moderate conductivity of 2.28×10?4 S cm?1 upon iodine doping, but much higher conductivity of up to 81.2 S cm?1 after the insoluble polypyrene was heated up to 1300 °C in nitrogen with a high char yield of 70.6 %. In particular, the soluble polypyrene demonstrates much stronger visible color fluorescence and much lower toxicity than pyrene. The soluble polypyrene would be advantageous for detecting Fe3+ with almost no interference of other metal ions. The soluble and insoluble polypyrene fractions have potential applications as intrinsically luminescent and highly conducting carbon materials, respectively.  相似文献   

19.
The synthesis of acrylonitrile‐butadiene rubbers (NBRs) via trithiocarbonate‐mediated reversible addition fragmentation chain transfer (RAFT) polymerization of acrylonitrile (ACN) and 1,3‐butadiene (BD) in solution under azeotropic conditions (38/62) was investigated for a broad range of common solvents: N,N‐dimethylacetamide (DMAc), chlorobenzene, 1,4‐dioxane, tert‐butanol, isobutyronitrile, toluene, trimethylacetonitrile, dimethyl carbonate, acetonitrile, methyl acetate, acetone, and tert‐butyl methyl ether. The gravimetrically determined conversions for the free radical polymerizations of ACN/BD after 22 h at 100 °C were in the range of 15% for methyl acetate to 35% for DMAc. The origin of the differences in conversion is attributed to the unequal decomposition behavior of the employed azo initiator 2,2′‐azobis(N‐butyl‐2‐methylpropionamide) ( 1 ) in the solvents under investigation, as determined by ultraviolet–visible (UV–vis) spectroscopy. Relative decomposition of 1 in solution (0.1 mol L?1) at 100 °C was calculated from the UV–vis spectra for selected solvents. 90% of 1 in DMAc was decomposed after 22 h, 83% in tert‐butanol, 57% in 1,4‐dioxane, 53% in isobutyronitrile, 45% in chlorobenzene, and 21% in toluene. The evolution of molecular weight with conversion using the initiator 1 was in accordance with the theoretically expected values, regardless of the solvent studied. Moreover, the RAFT‐mediated copolymerization of ACN/BD in DMAc with azo initiators 1 , 1‐[(1‐cyano‐1‐methylethyl)azo]formamide ( 2 ) and 1,1′‐azobis(cyclohexanecarbonitrile) ( 3 ) was investigated. A strong deviation from the linear evolution of molecular weight due to a fast decomposition of these initiators – congruent with high primary radical delivery rates – at the selected temperature was observed when using 2 and 3 . The deviation was not observed when using 1 . © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

20.
The propagation kinetics of N-vinylcarbazole (NVC) were carefully investigated via the IUPAC-recommended pulsed-laser polymerization/size-exclusion chromatography technique (PLP-SEC) in the temperature range between –20 and 20°C using 355 nm pulsed irradiation and the photo initiator 2,2-dimethoxy-2-phenylacetophenone (DMPA) as a source of primary radicals. Using this experimental approach, propagation rate coefficients, kp, were not accessible for temperatures exceeding 20°C. There is strong evidence that the monomer itself is excited by pulsed-laser light of 355 nm, thus contributing to the polymerization process via the formation of free radicals. In addition, UV light-induced cationic polymerization processes can not be ignored as a possible side reaction. NVC polymer also absorbs strongly at 355 nm and we speculate that this may lead to bond scission and branch network formation in the PLP process. Laser-controlled molecular weight distributions are only obtained for reaction temperatures below 20°C. The apparent Arrhenius parameters, EA and A, are 22.8 kJ·mol–1 and 3.6×107 L·mol–1·s–1, respectively. These results are divergent from recent literature data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号