首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Trimethylsilyl halides (Me3SiY), in conjunction with zinc halides (ZnX2) (Y and X:I, Br, Cl), were employed to investigate the living cationic polymerization of isobutyl vinyl ether (IBVE) in toluene at ?15°C in the presence of p-methoxybenzaldehyde; with the aldehyde and IBVE monomer, Me3SiY yields an initiating species [Me3Si? O? CHC6H4(OMe) ? CH2CH(OiBu) ? Y] that triggers the IBVE polymerization via the activation of its carbon-halogen bond (C? Y) by ZnX2 into Cδ+…?Yδ?…?ZnX2. Living polymerizations occurred with the silyl iodide and bromide irrespective of the type of ZnX2, either when Y = X (Me3Sil/Znl2 and Me3SiBr/ZnBr2) or when Y ≠ X (Me3Sil/ZnBr2, Me3SiI/ZnCl2, and Me3SiBr/Znl2). With these five initiating systems, the number-average molecular weights (M?n) of the polymers increased in proportion to monomer conversion, and the molecular weight distributions (MWDs) of the polymers were narrow (M?w/M?n = 1.1?1.2). The Me3SiCl-based systems (Me3SiCl/ZnCl2 and Me3SiCl/Znl2), in (Me3SiCl/Znl2), in contrast, failed to give perfectly living polymerization; the M?n indeed increased with conversion, but the MWDs of the polymers were broader (M?w/M?n = 1.3?1.5). Thus, the living nature of the polymerizations with Me3SiY/Znx2 is primarily determined by the halogen Y in Me3SiY, which generates the terminal carbon-halogen bond (C? Y) that is activated by ZnX2 for the propagation via a species Cδ+…?Yδ?…?ZnX2. For Y?, not only the iodide but the bromide anion also is suited for living cationic polymerization. The virtual absence of the effects of X in ZnX2 implies that the halogen exchange between ZnX2 and Y from Me3 SiY at the growing end (Cλ+…?Yδ?…?ZnX2 ?Cδ+…?Xδ?…?ZnXY) is absent or negligible.  相似文献   

2.
In the living cationic polymerization of isobutyl vinyl ether (IBVE) initiated by the hydrogen iodide/zinc halide (HI/ZnX2; X = I, Br, Cl) systems, the concentration ([P*]) of the living propagating species was determined by quenching with sodiomalonic ester ( 1 ). The quenching reaction was shown to be clean, instantaneous, and quantitative to give poly (IBVE) with a terminal malonate group from which [P*] was obtained by 1H-NMR spectroscopy. In the polymerizations in toluene below +25°C, [P*] was constant and equal to the initial concentration ([HI]0) of hydrogen iodide, independent of the type and concentrations of ZnX2 as well as monomer conversion. At 0 and +25°C, however, the living species started decaying immediately after the complete consumption of monomer. In contrast, such a decay process was absent at ?15°C even in the absence of monomer until about an hour (depending on the conditions) after the end of polymerization. The deactivation reaction was first order in [P*], and the lifetime (half-life) of the living species was longer at lower temperature and at lower ZnX2 concentration. On the basis of these [P*] and lifetime measurements, the HI/ZnX2 systems were also compared with the HI/I2 counterpart.  相似文献   

3.
Phosphoric and phosphinic acid derivatives (R1R2PO2H; R1, R2 = OPh, OPh; OnBu, OnBu; Ph, Ph; Ph, H) in conjunction with zinc chloride (ZnCl2) led to living cationic polymerization of isobutyl vinyl ether (IBVE) in toluene below 0°C. The number-average molecular weights (M?n) of the polymers (M?n > 2 × 104) were directly proportional to monomer conversion and in excellent agreement with the calculated values assuming that one polymer chain forms per R1R2PO2H molecule. Throughout the reaction, the molecular weight distributions (MWDs) stayed narrow (M?w/M?n ? 1.1). A dibasic acid, PhOP (O) (OH)2, coupled with ZnCl2, also induced living cationic polymerization of IBVE where one molecule of the acid generated two living polymer chains. The polymerization by (PhO)2PO2H/ZnCl2 and its model reactions were directly analyzed by 31P and 1H-NMR spectroscopy. The analysis showed that the acid initially forms the adduct [CH3CH(OiBu)OP(O)(OPh)2], the phosphate linkage of which is in turn activated by ZnCl2 so as to initiate living propagation. The finding thus indicates that (PhO)2PO2H indeed acts as an initiator in the living polymerization. The NMR analysis also suggested that an exchange reaction occurs between the phosphate group at the polymer terminal and the chlorine in ZnCl2. The occurrence of living IBVE polymerization with these various R1R2PO2H/ZnCl2 systems shows that phosphoric and phosphinic acids are another general class of protonic acids which are effective initiators for the living cationic polymerization assisted by Lewis acids. © 1993 John Wiley & Sons, Inc.  相似文献   

4.
The effect of zinc chloride (ZnCl2) on the cationic polymerization of isobutyl vinyl ether (IBVE) initiated by carboxyl groups on a carbon black surface was investigated. Although the polymerization of IBVE was initiated by carboxyl groups on the surface, the rate of polymerization was small and the molecular weight distribution (MWD) of poly IBVE was very broad. The rate of the polymerization was found to be drastically increased, and 100% monomer conversion was achieved in a short time by the addition of ZnCl2. The number-average molecular weights (Mn) of the polyIBVE were directly proportional to monomer conversion in the polymerization initiated by the carbon black/ZnCl2 system. By addition of the monomer at the end of the first-stage polymerization, the added monomer was smoothly polymerized at the same rate as in the first stage. The Mn of the polymer was in excellent agreement with the calculated value, assuming the polyIBVE chain forms per unit carboxyl group on the surface and MWD was narrow (Mw/Mn = 1.2 ~ 1.3). Based on the results, it is concluded that carbon black/ZnCl2 system has an ability to initiate the living cationic polymerization of IBVE. Furthermore, it was found that polyIBVE was grafted onto the carbon black surface after the quenching of the living polymer with methanol. © 1995 John Wiley & Sons, Inc.  相似文献   

5.
Various ethers were used to mediate the polymerizations of 1,3-pentadiene (PD) initiated by AlCl3 and by allyl chloride (AllyCl)/AlCl3. The introduction of the ethers exert considerable effects on polymer yield and molecular weight due to its interaction with the propagating carbocation. The carbocation reactivity is reduced by this interaction which is subject to the ether's nucleophilicity determined by the steric hindrance of groups adjacent to oxygen. The reduction of carbocation reactivity gives rise to a decrease of polymer yield owing to inhibition of propagation but results in an augmentation of molecular weight due to suppression of various side reactions such as terminations. By using suitably nucleophilic ethers such as diphenyl ether, the polymerization can be mediated to give an high molecular weight polymer in high yield.  相似文献   

6.
Various ethers were used to mediate the polymerization of 1,3-pentadiene (PD) initiated by AlCl3 and by allyl chloride (AllyCl)/AlCl3. The introduction of the ethers exert considerable effects on polymer yield and molecular weight due to its interaction with the propagating carbocation. The carbocation reactivity is reduced by this interaction which is subject to the ether's nucleophilicity determined by the steric hindrance of groups adjacent to oxygen. The reduction of carbocation reactivity gives rise to a decrease of polymer yield owing to inhibition of propagation but results in an augmentation of molecular weight due to suppression of various side reactions such as terminations. By using suitably nucleophilic ethers such as diphenyl ether, the polymerization can be mediated to give an high molecular weight polymer in high yield.  相似文献   

7.
The effect of common anion producing salt, tetrabutylammonium chloride (n-Bu4NCl), on the livingness and kinetics of styrene (St), p-chlorostyrene (pClSt), and p-methylstyrene (pMeSt) polymerization initiated by the 2-chloro-2,4,4-trimethylpentane (TMPCl)/TiCl4 system has been investigated. Uncontrolled (conventional) carbocationic polymerization of St and p MeSt can be converted to living polymerization by the use of n-Bu4NCl. Under similar conditions the polymerization of p ClSt is living even in the absence of n-Bu4NCl, although the molecular weight distribution (MWD) of the polymer becomes narrower in the presence of this salt. The apparent rates of polymerizations decrease in the presence of n-Bu4NCl in proportion with the concentration of the salt. The rate of living polymerization of p ClSt is noticeably lower than that of St, while that of p MeSt is higher. The apparent rate constants, kpA, of these polymerizations have been determined, and the effects of the electron donating p Me- and electron withdrawing p Cl-substituents relative to the rate of St polymerization have been analyzed. [For part LXI, see J. Si and J. P. Kennedy, Polym. Bull., 33 , 651 (1994)]. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 3341–3347, 1997  相似文献   

8.
Effects of steric crowding of the substituent of carboxylate counteranions on living cationic polymerization of isobutyl vinyl ether (IBVE) were investigated with the use of two series of carboxylic acids with various carbonyl substituents [RCOOH; R = (aliphatic series) CH3CH2, (CH3)2CH, (CH3)3C; (aromatic series) C6H5CH2, (C6H5)2CH, (C6H5)3C] in conjunction with tin tetrabromide (SnBr4) and 1,4-dioxane (DO) in toluene at 0°C. The overall polymerization rate increased with increasing the bulkiness of the substituents R in both the series: R = CH3 (1) ≃ CH3CH2 (1) < (CH3)2CH (1.76) < (CH3)3C (2.31); C6H5CH2 (0.84) < (C6H5)2CH (0.98) < (C6H5)3C (1.74); the values in the parentheses show the relative polymerization rate. In all the polymerizations, the number-average molecular weight (Mn) of the polymers was directly proportional to monomer conversion and in good agreement with the calculated values, assuming that one RCOOH molecule forms one polymer chain. The living nature of these polymerizations was further confirmed by a linear increase in Mn of the polymers upon sequential addition of a fresh monomer feed to the almost completely polymerized reaction mixtures. In the polymerizations with sterically less hindered carboxylic acids [R = CH3CH2, (CH3)2CH, C6H5CH2, (C6H5)2CH], the molecular weight distribution (MWD) of the polymers was very narrow (Mw/Mn < 1.1) throughout the polymerizations. In contrast, with bulkier substituent-containing counterparts [R = (CH3)3C, (C6H5)3C], the polymerizations led to the polymers of relatively broad MWD (Mw/Mn ≅ 1.5 at ca. 100% monomer conversion). The bulky substituents such as (CH3)3C and (C6H5)3C may decrease the interconversion rate between a dormant and an active species and increase the time-average concentration of the active growing species. The stereoregularity of the obtained polymers was not changed much with the steric environment of the counteranion (meso: 66–69%). © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 2923–2932, 1999  相似文献   

9.
This paper overviews three living cationic polymerization systems (for styrene, p-methoxystyrene, and isobutyl vinyl ether) that are, in common, featured by: (i) specifically in nonpolar solvents, the use of the hydrogen halide/metal halide initiating systems (HX/MXn; X: I, Br, Cl; MXn: ZnX2, SnCl4), which generate a living growing carbocation stabilized by a nucleophilic counteranion (X…MXn); (ii) specifically in polar solvents, the use of externally added ammonium salts (nBu4N+Y; Y: I, Br, Cl), which permit the generation of living species from HX/MXn by providing nucleophilic halogen anions Y, either the same as or different from the halogen X in HX.  相似文献   

10.
Aryl(alkyl) halides and silver salts were studied as environmentally benign initiating systems for cationic polymerization of isobutyl vinyl ether (IBVE). The reactivity of the benzyl cations could be effectively controlled by using dimethyl sulfide (Me2S) as an additive, which was shown to be an effective Lewis base (LB), and diethyl ether as a reaction solvent. Detailed study of various benzyl cations and the order of addition of the reagents revealed that the reaction was controlled by the electronic and steric features of aryl(alkyl) halides, LBs, and IBVE, and a plausible reaction mechanism was presented. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 2050–2058  相似文献   

11.
The living cationic polymerization of 6‐tert‐butoxy‐2‐vinylnaphthalene (tBOVN), a vinylnaphthalene derivative with an electron‐donating group, was achieved with a TiCl4/SnCl4 combined initiating system in the presence of ethyl acetate as an added base at –30 °C. The absence of side reactions at low temperature was confirmed by 1H NMR analysis of the resulting polymer. In contrast to this controlled reaction at –30 °C, reactions performed at higher temperature, such as 0 °C, frequently involved unwanted intramolecular or intermolecular Friedel–Crafts reactions of naphthalene rings due to the high electron density of these rings. The cationic polymerization of 6‐acetoxy‐2‐vinylnaphthalene, a derivative with an acetoxy group, was also controlled under similar conditions, but chain transfer reactions were not completely suppressed during the polymerization of 2‐vinylnaphthalene. The glass transition temperature (Tg) of the obtained poly(tBOVN) was 157 °C, a value higher by 94 °C than that of the corresponding styrene derivative. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 4828–4834  相似文献   

12.
The cationic polymerization of vinyl ethers initiated by CH3-CH(OR)(I) / R4N+A (R = Alkyl, A = ClO4, BF4, PF6, I, NO3) shows the characteristics of a living polymerization. The rate of polymerization is a function of the solvent polarity, the temperature, the type and concentration of the ammonium salt. The experimental data can be explained on the basis of the secondary salt effect overlapped by some dipol-dipol interactions of the chain end and the added salt. Functionalization of the chain end with thermolabile azo functions yields polymeric initiator which was applied for the synthesis of blockcopolymers. Vinyl ethers functionalized with furylacrylic ester groups were polymerized and crosslinked via [2+2] cycloaddition.  相似文献   

13.
14.
In contrast to the common view, living cationic polymerization of p-methoxy- and p-t-butoxystyrenes proceeded in polar solvents such as EtNO2/CH2Cl2 mixtures, and involvement of free ionic growing species therein was examined. For example, the two alkoxystyrenes were polymerized with the isobutyl vinyl ether-HCl adduct/ZnCl2 initiating system at −15°C in such polar solvents as CH2Cl2 or EtNO2/CH2Cl2 [1/1 (v/v)], as well as toluene. The number average molecular weight (M̄n) of the polymers increased in direct proportion to the monomer conversion, even after sequential monomer addition, and the molecular weight distribution (MWD) stayed very narrow throughout the reaction. In addition, the M̄n agreed with the calculated values, assuming that one adduct molecule generates one living polymer chain. In these polar media the addition of a common ion salt retarded the polymerization, indicating that dissociated ionic species are involved in the propagating reaction. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 3694–3701, 1999  相似文献   

15.
Onium salts are latent sources of cationic species that can be released on demand to initiate cationic polymerizations by the application of various external physical and chemical stimuli. This paper will report on the use of several different types of stimuli to provide interesting and useful unconventional methods for initiating cationic polymerizations.  相似文献   

16.
17.
Cationic polymerization of isobutyl vinyl ether (IBVE) with acetic acid (CH3COOH)/tin tetrahalide (SnX4: X = Cl, Br, I) initiating systems in toluene solvent at 0°C was investigated, and the reaction conditions for living polymerization of IBVE with the new initiating systems were established. Among these tin tetrahalides, SnBr4 was found to be the most suitable Lewis acid to obtain living poly(IBVE) with a narrow molecular weight distribution (MWD). The polymerization with the CH3COOH/SnBr4 system, however, was accompanied with the formation of a small amount of another polymer fraction of very broad MWD, probably due to the occurrence of an uncontrolled initiation by SnBr4 coupled with protonic impurity. Addition of 1,4-dioxane (1–1.25 vol %) or 2,6-di-tert-butylpyridine (0.1–0.6mM) to the polymerization mixture completely eliminated the uncontrolled polymer to give only the living polymer with very narrow MWD (M w/M n ≤ 1.1; M w, weight-average molecular weight; M n, number-average molecular weight). The M n of the polymers increased in direct proportion to monomer conversion, continued to increase upon sequential addition of a fresh monomer feed, and was in good agreement with the calculated values assuming that one CH3COOH molecule formed one polymer chain. Along with these results, kinetic study and direct 1H-NMR observation of the living polymerization indicated that CH3COOH and SnBr4 act as so-called “initiator” and “activator”, respectively, and the living polymerization proceeds via an activation of the acetate dormant species. The basic additives such as 1,4-dioxane and 2,6-di-tert-butylpyridine would serve mainly as a “suppressor” of the uncontrolled initiation by SnBr4. The polymers produced after quenching the living polymerization with methanol possessed the acetate dormant terminal and they induced living polymerization of IBVE in conjunction with SnBr4 in the presence of 1,4-dioxane. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 3173–3185, 1998  相似文献   

18.
Cationic polymerization of 2,3‐dihydrofuran (DHF) and its derivatives was examined using base‐stabilized initiating systems with various Lewis acids. Living cationic polymerization of DHF was achieved using Et1.5AlCl1.5 in toluene in the presence of THF at 0 °C, whereas it has been reported that only less controlled reactions occurred at 0 °C. Monomer‐addition experiments of DHF and the block copolymerization with isobutyl vinyl ether demonstrated the livingness of the DHF polymerization: the number–average molecular weight of the polymers shifted higher with low polydispersity as the polymerization proceeded after the monomer addition. Furthermore, this base‐stabilized cationic polymerization system allowed living polymerization of ethyl 1‐propenyl ether and 4,5‐dihydro‐2‐methylfuran at ?30 and ?78 °C, respectively. In the polymerization of 2,3‐benzofuran, the long‐lived growing species were produced at ?78 °C. The obtained polymers have higher glass transition temperatures compared to poly(acyclic alkyl vinyl ether)s. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4495–4504, 2008  相似文献   

19.
Cationic polymerization of isobutyl vinyl ether (IBVE) was examined using a variety of metal oxides in conjunction with IBVE–HCl adduct as a cationogen in toluene at 0 °C. Iron oxides (α‐Fe2O3, γ‐Fe2O3, and Fe3O4) induced living polymerization in the presence of an added base, ethyl acetate or 1,4‐dioxane, to give polymers with very narrow molecular weight distributions (MWDs). Conversely, with other metal oxides such as Ga2O3, In2O3, ZnO, Co3O4, and Bi2O3, polymers with bimodal MWDs, including long‐lived species along with uncontrolled higher molecular weight portions, were produced in the presence of an added base. A small amount of nBu4NCl or 2,6‐di‐tert‐butylpyridine (DTBP) suppressed the uncontrolled portion to induce controlled reactions with Ga2O3, In2O3, and ZnO. The roles of these reagents are discussed in terms of the nature of the active sites of the catalyst surface and the polymerization mechanisms. In addition, the reusability of the catalyst, the effect of stirring before and during polymerization, and the estimation of the number of active sites are also described. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 916–926, 2010  相似文献   

20.
Initiated by an organic molecule trifluoromethanesulfonimide (HNTf2) without any Lewis acid or Lewis base stabilizer, cationic polymerization of isobutyl vinyl ether (IBVE) takes place rapidly and the polymerization is proved to be in a controlled/living manner. The conversion of IBVE could easily achieve 99% in seconds. The product poly(isobutyl vinyl ether) is narrowly distributed and its molecular weight increases linearly with time and fits well with the corresponding theoretical value. This single‐molecular initiating system also works well in the living cationic polymerization of ethyl vinyl ether. HNTf2 is considered playing multiple roles which include initiator, activator, and stabilizer in the polymerization. It is quite different from the hydrogen halide‐catalyzed polymerizations of vinyl ethers. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1373‐1377  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号