首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
An experimental injection port has been designed for split or splitless sample introduction in capillary gas chromatography; the inlet uses electronic pressure control, in order that the column head pressure may be set from the GC keyboard, and the inlet may be used in the constant flow or constant pressure modes. Alternatively, the column head pressure may be programmed up or down during a GC run in a manner analogous to even temperature programming. Using electronic pressure control, a method was developed which used high column head pressures (high column flow rates) at the time of injection, followed by rapid reduction of the pressure to that required for optimum GC separation. In this way, high flow rates could be used at the time of splitless injection to reduce sample discrimination, while lower flow rates could be used for the separation. Using this method, up to 5 μl of a test sample could be injected in the splitless mode with no discrimination; in another experiment, 2.3 times as much sample was introduced into the column by using electronic pressure programming. Some GC peak broadening was observed in the first experiment.  相似文献   

2.
HP 5890 Series II Gas Chromatographs are equipped with prototype hardware enabling electronic pressure programming of all detector and carrier gases. A method of using electronic pressure control (EPC) to optimize detector performance (sensitivity, selectivity, and baseline stability) is demonstrated. With EPC, sample introduction, column separation, and detector performance can be optimized simultaneously without the classical trade-offs in performance. An example is also presented of the use of a new automated system which enables cool on-column injection into 250 or 320 μm columns without the need for a retention gap.  相似文献   

3.
Chromatography with supercritical fluids unites the features of both gas chromatography and liquid chromatography, yet retains special characteristics of its own. The diffusion coefficient and particularly the viscosity of fluid phases may approach values for low-pressure gases, while the solvent power may be similar to that of liquids. However, with supercritical fluids it is possible to control chromatographic separations very effectively by pressure programming, since the solubility increases with increasing density. Temperature programming, on the other hand, can have the opposite effect to that in gas- or liquid-chromatography since the density decreases with increasing temperature at a given pressure. Supercritical fluid chromatography is primarily of interest for the separation of higher molecular weight compounds. The efficiency of this method of separation is demonstrated on several homologous series. Thus, a styrene oligomer with nominal Mw=2200 can be resolved by a pressure and temperature program into 40 species.  相似文献   

4.
In electrochromatography, solvent electrophoretic mobility and solute partitioning are temperature dependent processes. If temperature variations are controlled, solute selectivity and analysis times can be tailored. In this study the feasibility of temperature programming in capillary electrochromatography (CEC) was demonstrated using a reversed-phase CEC mode. The outcome of programmed separations was compared with isothermal, isocratic and isorheic (constant flow) separations. The combined effects of column temperature and mobile phase flow-rate changes during the separation run, resulted in up to a 50% reduction in the separation run time, without adversely affecting the quality of separation. For capillary electrochromatography, temperature programming may be a valuable alternative to solvent programming modes because of the great technical difficulties associated with carrying out solvent gradient elution.  相似文献   

5.
An electronic gas-flow controller system called Advanced Flow Control (AFC), which controls not only carrier gas pressure at the column inlet but also the total gas flow including the split flow, was designed and evaluated. BASIC programming of repetitive analyses of standard mixtures under varied split ratios and pressure programs allowed automated optimization of those conditions for the desired column loading and resolution between adjacent peaks.  相似文献   

6.
A split/splitless capillary injection port has been developed for electronic pressure programming (EPP) in gas chromatography. The inlet may be operated in several modes: constant pressure, constant flow, vacuum compensation (for gas chromatography–mass spectrometry (GC-MS)), pressure-programmed, or a combination mode enabling a pressure program to be followed by constant flow. A pressure-programming technique has been tried which uses high pressure (high column flow rate) at the time of injection followed by reduction in inlet pressure to a value required for normal chromatography. Sample is swept rapidly from the inlet and into the column, reducing contact with the hot, active inlet surfaces which cause sample decomposition. The decomposition of endrin and 4,4′-DDT, two labile pesticides, can be substantially reduced using this technique and modest improvements were also observed with the carbamate pesticide carbaryl.  相似文献   

7.
Wen Zeng  Hai Fu 《Electrophoresis》2020,41(10-11):852-859
The pressure-driven device is designed and the flow rates of the microfluidic systems can be supplied by the pressure-driven flows, which can significantly reduce the flow-rate fluctuations coming from the pump source. For pressure-driven flows, the flow rates of the fluids can be predicted by measuring the pressure drop along a polytetrafluoroethylene (PTFE) tubing. Especially, by varying the geometrical parameters of the PTFE tubing, the predicted flow rates of the fluids are compared with the experimental measurements, and the testing precision of the pressure-driven flows can be obtained. Meanwhile, the dynamic characteristics of the open-loop and closed-loop control pressure-driven device are comparatively studied. Particularly, a proportional and integral (PI) controller is integrated with the closed-loop control pressure-driven device, and the effects of the parameters of the PI controller on the dynamic characteristics of the pressure-driven devices are mainly discussed. Most importantly, by improving the dynamic characteristics of the pressure-driven devices, precise measurement and control of the pressure-driven flows can be achieved for microfluidic systems.  相似文献   

8.
Fast liquid chromatographic (LC) methods are important for a variety of applications. Reducing the particle diameter (d(p)) is the most effective way to achieve fast separations while preserving high efficiency. Since the pressure drop along a packed column is inversely proportional to the square of the particle size, when columns packed with small particles (<2 microm) are used, ultrahigh pressures (>689 bar) must be applied to overcome the resistance to mobile phase flow. Elevating the column temperature can significantly reduce the mobile phase viscosity, allowing operation at higher flow rate for the same pressure. It also leads to a decrease in retention factor. The advantage of using elevated temperatures in LC is the ability to significantly shorten separation time with minimal loss in column efficiency. Therefore, combining elevated temperature with ultrahigh pressure facilitates fast and efficient separations. In this study, C6-modified 1.0 microm nonporous silica particles were used to demonstrate fast separations using a temperature of 80 degrees C and a pressure of 2413 bar. Selected separations were completed in 30 s with efficiencies as high as 220,000 plates m(-1).  相似文献   

9.
The theoretical and practical implications of simultaneous temperature/pressure and synchronized density/temperature programming are considered. Examples are shown for separations of dimethylpolysiloxanes where these techniques provide superior separation over their analogous isothermal programming methods.  相似文献   

10.
High-speed temperature programming is implemented via the direct resistive heating of the separation column (2.3m MXT-5 Silicosteel column with a 180 microm I.D. and a 0.4 microm 5% phenyl/95% dimethyl polysiloxane film). Resistive temperature programming was coupled with synchronized dual-valve injection (with an injection pulse width of 2 ms), producing a complete high-speed gas chromatography (GC) system. A comparison of isothermal and temperature programmed separations of seven n-alkanes (C(6) and C(8)-C(13)) shows a substantial improvement of peak width and peak capacity with temperature programming. The system was further implemented in separations of a mixture of analytes from various chemical classes. Separations of the n-alkane mixture using three different temperature programming rates are reported. A temperature programming rate as high as 240 degrees C/s is demonstrated. The method for determination of temperature programming rate, based on isothermal data, is discussed. The high-speed resistive column heating temperature programming resulted in highly reproducible separations. The highest rate of temperature programming (240 degrees C/s) resulted in retention time and peak width RSD, on average, of 0.5 and 1.4%, respectively, for the n-alkane mixture. This high level of precision was achieved with peak widths-at-half-height ranging from 13 to 36 ms, and retention times ranging from 147 to 444 ms (for n-hexane to n-tridecane).  相似文献   

11.
We previously reported on a new counter-current chromatography (CCC) operating mode called closed-loop recycling dual-mode counter-current chromatography (CLR DM CCC), which incorporates the advantages of closed-loop recycling (CLR) and dual-mode (DM) counter-current chromatography and includes sequential separation of compounds in the closed-loop recycling mode with the mobile x-phase and in the inverted-phase counter-current mode with the mobile y-phase. The theoretical analysis of several implementations of this separation method was carried out under impulse sample injection conditions. This study is dedicated to the further development of CLR DM CCC theory applied to preparative and industrial separations, where high-throughput operation is required. Large sample volumes can be loaded via continuous loading within a specified time. To simulate CLR DM CCC separations with specified sample loading durations, equations are developed and presented in “Mathcad” software.  相似文献   

12.
Summary Mixed mobile phase delivery for CSFC is served by a system previously designed for packed column SFC, where a back-pressure regulator controls pressure programming. Piston pumps deliver separate flows of carbon dioxide and modifier (2-propanol). The on-line mixed phase with the injected sample is split to the capillary column. Compared to a commercially available CSFC instrument the system shows no significant differences in resolution. Applications show the advantages of using modifiers in CSFC, such as separations of polar, ionic and high molecular weight compounds, influences on selectivity and shorter retention times.  相似文献   

13.
An interface for coupling hydraulic high pressure nebulization (HHPN) with microwave induced plasma (MIP) atomic emission spectrometry (AES) is described. An appropriate spray chamber and aerosol desolvation system has been constructed for matching the HHPN generated aerosol flow with the loading capacity of toroidal argon and cylindrical helium MIP sources. The system has been optimized for aqueous solutions. Nanogram amounts of metals and nonmetals could be detected by the HHPN-MIP-AES technique developed. The HHPN devices are directly compatible with HPLC solvent flow, therefore they can be directly coupled with HPLC separations in aqueous media.  相似文献   

14.
An interface for coupling hydraulic high pressure nebulization (HHPN) with microwave induced plasma (MIP) atomic emission spectrometry (AES) is described. An appropriate spray chamber and aerosol desolvation system has been constructed for matching the HHPN generated aerosol flow with the loading capacity of toroidal argon and cylindrical helium MIP sources. The system has been optimized for aqueous solutions. Nanogram amounts of metals and nonmetals could be detected by the HHPN-MIP-AES technique developed. The HHPN devices are directly compatible with HPLC solvent flow, therefore they can be directly coupled with HPLC separations in aqueous media.  相似文献   

15.
《Sensors and Actuators》1987,11(1):63-72
A miniature flow sensor, consisting of a thin film thermally-isolated microstructure integrated onto a silicon chip, has a large temperature response over a broad range of air flow velocities. When packaged in a suitable channel to provide a controlled laminar flow, the sensor response can be calibrated for velocity, mass flow or differential pressure. The sensor combines advantages of sensitivity, small size, low power and low cost and can be used in a broad range of flow and differential pressure applications.  相似文献   

16.
Analyses in chromatographic systems able to save mobile and stationary phases without reducing efficiency and resolution are of current interest. These advantages regarding savings have challenged us to develop a system dedicated to miniaturized liquid chromatography. This paper reports on the development of a high‐pressure syringe‐type pump, an oven able to perform isothermal and temperature programming and a software program to control these chromatographic devices. The experimental results show that the miniaturized system can generate reproducible and accurate temperature and flow rate. The system was applied to the separation of statins and tetracylines and showed excellent performance.  相似文献   

17.
Biomolecules very often present complex energy deactivation networks with overlapping electronic absorption bands, making their study a difficult task. This can be especially true in transient absorption spectroscopy when signals from bleach, excited state absorption and stimulated emission contribute to the signal. However, quantum control spectroscopy can be used to discriminate specific electronic states of interest by applying specifically designed laser pulses. Recently, we have shown the control of energy flow in bacterial light-harvesting using shaped pump pulses in the visible and the selective population of pathways in carotenoids using an additional depletion pulse in the transient absorption technique. Here, we apply a closed-loop optimization approach to β-carotene using a spatial light modulator to decipher the energy flow network after a multiphoton excitation with a shaped ultrashort pulse in the near-IR. After excitation, two overlapping bands were detected and identified as the S1 state and the first triplet state T1. Using the transient absorption signal at a specific probe delay as feedback, the triplet signal could be optimized over the singlet contribution.  相似文献   

18.
Capillary supercritical fluid chromatography (SFC) is proving to be a viable and useful separation method for thermally labile and nonvolatile materials. As with other capillary chromatographic techniques, very fast separations can be accomplished by sacrificing total efficiency and optimizing the conditions for rapid analysis. This is achieved using short, small-bore capillary columns, increased mobile phase linear velocities and very fast pressure programming rates. These principles are demonstrated for the rapid separation of selected component systems.  相似文献   

19.
A unique integrated separation-based fiber-optic sensor for remote analysis, that incorporates capillary electrophoresis (CE) directly at the fiber sensing terminus is described for the first time. Based on laser-induced fluorescence detection, the sensor offers the potential for high sensitivity. Although the broad-band nature of fluorescence spectra limits selectivity, the high separation power of CE provides a unique dimension of selectivity, while permitting a design of diminutive size. Previously reported fluorescence-based sensors that utilize a chemical reagent phase to impart selectivity tend to be inflexible (not readily adaptable to the detection of different species) and "one-measurement-only" sensors. Conversely, the CE-based fiber-optic sensor described here is both versatile and reusable. The analysis speed and the potential for remote control are further attributes which make the system amenable to remote sensing. A "single-fiber" optical detection arrangement and a "single-reservoir" CE system with the fiber-optic probing the outlet of the separation capillary are employed. A preliminary evaluation of the separation characteristics of this CE-based sensor is presented. Highlights include an observed separation efficiency of up to 3000 theoretical plates (8 cm separation capillary) and migration time reproducibility of less than 10% for frontal mode CE separations. The potential utility of the sensor for remote analysis is demonstrated with separations involving the CE analysis of charged fluorescent dyes, CE analysis of metal complexes based on in situ complexation and micellar electrokinetic capillary chromatographic analysis of neutral fluorescent compounds.  相似文献   

20.
A microprocessor control system is reported for automated multiple flow injection analysis. The control system consists of an IMSAI-8048 microprocessor, some associated electronic interfacing and a control computer command language. The system can be programmed to control any of three versions of automated multiple flow injection analysers. This control system is relatively inexpensive and is suitable for use by inexperienced personnel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号