首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Under anaerobic conditions S-nitrosothiols 1a-e undergo thermal decomposition by homolytic cleavage of the S-N bond; the reaction leads to nitric oxide and sulfanyl radicals formed in a reversible manner. The rate constants, k(t), have been determined at different temperatures from kinetic measurements performed in refluxing alkane solvents. The tertiary nitrosothiols 1c (k1(69 degrees C) = 13 x 10(-3) min(-1)) and 1d (k1(69 degrees C) = 91 x 10(-3) min(-1)) decomposed faster than the primary nitrosothiols 1a (k1(69 degrees C) = 3.0 x 10(-3) min(-1)) and 1b (k1(69 degrees C) = 6.5 x 10(-3) min(-1)). The activation energies (E# = 20.5-22.8 Kcal mol(-1)) have been calculated from the Arrhenius equation. Under aerobic conditions the decay of S-nitrosothiols 1a-e takes place by an autocatalytic chain-decomposition process catalyzed by N2O3. The latter is formed by reaction of dioxygen with endogenous and/or exogenous nitric oxide. The autocatalytic decomposition is strongly inhibited by removing the endogenous nitric oxide or by the presence of antioxidants, such as p-cresol, beta-styrene, and BHT. The rate of the chain reaction is independent of the RSNO concentration and decreases with increasing bulkiness of the alkyl group; this shows that steric effects are crucial in the propagation step.  相似文献   

2.
The combustion chemistry of morpholine (C(4)H(8)ONH) has been experimentally investigated recently as a representative model compound for O- and N-containing structural entities in biomass. Detailed profiles of species indicate the self-breakdown reactions prevailing over oxidative decomposition reactions. In this study, we derive thermodynamic and kinetic properties pertinent to all plausible reactions involved in the self-decomposition of morpholine and its derived morphyl radicals as a crucial task in the development of comprehensive combustion mechanism. Potential energy surfaces have been mapped out for the decomposition of morpholine and the three morphyl radicals. RRKM-based calculations predict the self-decomposition of morpholine to be dominated by 1,3-intramolecular hydrogen shift into the NH group at all temperatures and pressures. Self-decomposition of morpholine is shown to provide pathways for the formation of the experimentally detected products such as ethenol and ethenamine. Energetic requirements of all self-decomposition of morphyl radicals are predicted to be of modest values (i.e., 20-40 kcal/mol) which in turn support the occurrence of breaking-down reactions into two-heavy-atom species and the generation of doubly unsaturated four-heavy-atom segments. Calculated thermochemical parameters (in terms of standard enthalpies of formation, standard entropies, and heat capacities) and kinetic parameters (in terms of reaction rate constants at a high pressure limit) should be instrumental in building a robust kinetic model for the oxidation of morpholine.  相似文献   

3.
The gas-phase thermal decomposition of 2-chloropropene in the presence of a radical inhibitor was studied in the temperature range of 668.2–747.2 K and pressure between 11–76 Torr using the conventional static system. The dehydrochlorination to propyne and HCl was the only reaction channel and accounted for >98% of the reaction. The formation of propyne was found to be homogeneous and unimolecular and follows a first-order rate law. The observed rate coefficient is expressed by the following Arrhenius equation: $$ k_{total} = 10^{13.05 \pm 0.46} (s^{ - 1} )\exp ^{ - 242.6 \pm 6.2({{kJ} \mathord{\left/ {\vphantom {{kJ} {mol}}} \right. \kern-\nulldelimiterspace} {mol}})/RT} . $$ The hydrogen halide elimination is believed to proceed through a semipolar four-membered cyclic transition state. The presence of a methyl group on the α-carbon atom lowered the activation energy by 47 kJ mol?1. The experimentally observed pressure dependence of the rate constant is compared with the theoretically predicted values that are obtained by RRKM calculations.  相似文献   

4.
The heterogeneous chemistry and photochemistry of ozone on oxide components of mineral dust aerosol, including α-Fe(2)O(3), TiO(2), and α-Al(2)O(3), at different relative humidities have been investigated using an environmental aerosol chamber. The rate and extent of ozone decomposition on these oxide surfaces are found to be a function of the nature of the surface as well as the presence of light and relative humidity. Under dark and dry conditions, only α-Fe(2)O(3) exhibits catalytic decomposition toward ozone, whereas the reactivity of TiO(2) and α-Al(2)O(3) is rapidly quenched upon ozone exposure. However, upon irradiation, TiO(2) is active toward O(3) decomposition and α-Al(2)O(3) remains inactive. In the presence of relative humidity, ozone decay on α-Fe(2)O(3) subject to irradiation or under dark conditions is found to decrease. In contrast, ozone decomposition is enhanced for irradiated TiO(2) as relative humidity initially increases but then begins to decrease at higher relative humidity levels. A kinetic model was used to obtain heterogeneous reaction rates for different homogeneous and heterogeneous reaction pathways taking place in the environmental aerosol chamber. The atmospheric implications of these results are discussed.  相似文献   

5.
The thermal decomposition of alkoxides and amides of magnesium have been studied by vacuum TGA under both isothermal and non-isothermal conditions. These compounds were found to follow a unimolecular decay law, which in integrated form is ln(1  α)  kt, where α is the fraction of material reacted, and k is the Arrhenius rate constant. The rate-controlling process is random nucleation, one nucleus on each particle. Energies of activation calculated by isothermal and non-isothermal methods agree to within ±20%.  相似文献   

6.
Quantum chemical calculations were used to study the production of ethylene and keto/enol tautomers from ethoxyquinoline (2‐EQ) and ethoxyisoquinoline (1‐EisoQ and 3‐EisoQ) in the gas phase and ethanol at the MP2/6‐311++G(2d,2p)//BMK/6‐31+G(d,p) level. The obtained data indicate that the elimination of ethylene from 1‐EisoQ and 2‐EQ is slightly more favorable than from 3‐EisoQ. Formation of quinolone and isoquinolone (2‐EQO, 1‐EisoQO, and 3‐EisoQO) is kinetically favored compared to their enols. Decomposition of 2‐EQ and 1‐EisoQ to ethylene and keto forms is thermodynamically and kinetically preferable more stable than the corresponding enols. However, the hydroxy form of 3‐EisoQ is more stable than its keto tautomer in the gas phase and ethanol. The enol tautomers cost less energy when formed from their keto forms rather than from the parent ethoxyquinolone and ethoxyisoquinoline.  相似文献   

7.
Thermal decomposition of anhydrous strontium titanyl oxalate proceeds through a series of complex reactions to form strontium metatitanate at high temperature. Among them the decomposition of oxalate is the first major thermal event. A kinetic study of oxalate decomposition in the temperature range 553-593 K has been carried out by cooled gas pressure measurement in vacuum. Results fitted the Zhuravlev equation for almost the entire α-range (0.05-0.92) indicating the occurrence of a diffusion-controlled, three-dimensional rate process. The activation energy has been calculated to be 164 ± 10 kJ mol−1. Results from elemental analysis, TGA, IR and SEM studies of undecomposed and partially decomposed samples have been used to supplement kinetic observations in formulating the mechanism for oxalate decomposition.  相似文献   

8.
The rate of reaction between NO and HNO3 and the rate of thermal decomposition of HNO3 have been measured by FTIR spectroscopy. The measurements were made in a teflon lined batch reactor having a surface to volume ratio of 14 m?1. During the experiments, with initial HNO3 concentrations between 2 and 12 ppm and NO concentrations between 2 and 30 ppm, a reactant stoichiometry of unity and a first order NO and HNO3 dependence were confirmed. The observed rate constant for the reaction at 22°C and atmospheric pressure was determined to 1.1 (±0.3) 10?5 ppm?1 min?1. At atmospheric pressure, HNO3 decomposes into NO2 and other products with a first order HNO3 dependence and with a rate constant of 2.0 (±0.2) 10?3 min?1. The apparent activation energy for the decomposition is 13 (±4) kJ mol?1.  相似文献   

9.
Despite the fact that the thermal decomposition of polytetrafluoroethylene has been extensively studied over the past six decades, some inconsistencies regarding the kinetic parameters, e.g. the order of the reaction, remain. Representative kinetic data are essential for practical purposes such as reactor design and scaling. In general the literature data refer to homogeneous bulk heating, whereas the case of the non-homogeneous heating of a single particle has not received attention. Data (reaction rate and pre-exponential factor) applicable to this latter case were experimentally determined from isothermal thermogravimetric analyses of the depolymerisation reaction of PTFE. The kinetic data obtained on coarse granules (800-1000 μm) are reported here. The rate law is consistent with a shrinking particle kinetic model, with chemical kinetics controlling phase-boundary movement. The mass loss rate is directly proportional to surface area. A rate law applicable to this case, and useable for geometries of arbitrary shape, is derived.  相似文献   

10.
Data on the thermal stability of organic materials such as diaminofurazan (DAF) and diaminoglyoxime (DAG) was required in order to obtain safety information for handling, storage and use. These compounds have been shown to be a useful intermediate for the preparation of energetic compounds. In the present study, the thermal stability of the DAF and DAG was determined by differential scanning calorimetery (DSC) and simultaneous thermogravimetery-differential thermal analysis (TG-DTA) techniques. The results of TG analysis revealed that the main thermal degradation for the DAF and DAG occurs in the temperature ranges of 230–275°C and 180–230°C, respectively. On the other hand, the TG-DTA analysis of compounds indicates that DAF melts (at about 182°C) before it decomposes. However, the thermal decomposition of the DAG started simultaneously with its melting. The influence of the heating rate (5, 10, 15 and 20°C min−1) on the DSC behaviour of the compounds was verified. The results showed that, as the heating rate was increased, decomposition temperatures of the compounds were increased. Also, the kinetic parameters such as activation energy and frequency factor for the compounds were obtained from the DSC data by non-isothermal methods proposed by ASTM E698 and Ozawa. Based on the values of activation energy obtained by ASTM and Ozawa methods, the following order in the thermal stability was noticed: DAF>DAG.  相似文献   

11.
β-Nitroalcohols 1a–g undergo, in aqueous buffered solution, a specific base catalyzed carbonyl-forming elimination. The transition state for the rate-limiting CC bond breakage step has been estimated to be rather reactant-like.  相似文献   

12.
The isoconversional methods (Friedman (FR), Flynn-Wall-Ozawa (FWO) and Kissinger-Akahira-Sunose (KAS)) were applied for evaluating the dependencies of the activation energy (E) on the mass loss (Δm) corresponding to the non-isothermal decomposition of two Zn acetate-based gel precursors for ZnO thin films whose preparation differs by the drying temperature of the liquid sol-precursor (125°C for sample A, and 150°C for sample B). Although both investigated samples exhibit similar decomposition steps, strong differences between E vs. Δm curves as well as among the characteristic parameters of the decomposition steps, directly evaluated from TG, DTG and DTA curves, were put in evidence.  相似文献   

13.
The paper presents a non-isothermal kinetic study of the decomposition of Zn acetate-based gel precursors for ZnO thin films, based on the thermogravimetric (TG) data. The evaluation of the dependence of the activation energy (E) on the mass loss (Δm) using the isoconversional methods (Friedman (FR), Flynn-Wall-Ozawa (FWO) and Kissinger-Akahira-Sunose (KAS)) has been presented in a previous paper. It was obtained that the sample dried at 125°C for 8 h exhibits the activation energy independent on the heating rate for the second decomposition step. In this paper the invariant kinetic parameter (IKP) method is used for evaluating the invariant activation parameters, which were used for numerically evaluation of the function of conversion. The value of the invariant activation energy is in a good agreement with those determined by isoconversional methods. In order to determine the kinetic model, IKP method was associated with the criterion of coincidence of the kinetic parameters for all heating rates. Finally, the following kinetic triplet was obtained: E=91.7 (±0.1) kJ mol−1, lnA(s−1)=16.174 (±0.020) and F1 kinetic model.  相似文献   

14.
15.
The thermal analysis of some pesticides using simultaneous TG-DSC measurements and kinetic calculations by the dynamic TG technique have been carried out.With this technique it was attempted to group compounds with similar structures according to the shape and number of peaks of their thermoanalytical curves and to characterize their features by means of thermodynamic and kinetic quantities.Small variations in the structure of the components of a class make larger variations in the thermodynamic and kinetic values being in close agreement with the observed differences in their biological behaviour.
Zusammenfassung Mittels simultanen TG-DSC-Messungen und kinetischen Berechnungen bei der DTG-Technik wurde eine thermische Analyse einiger Pestizide durchgeführt.Mit dieser Methode wurde versucht, Verbindungen mit ähnlichen Strukturen anhand der Form und Anzahl von Peaks ihrer thermoanalytischen Kurven zu gruppieren und ihre Eigenschaften mittels thermodynamischen und kinetischen Mengen zu charakterisieren.Geringe Änderungen in der Struktur der Komponenten einer Klasse verursachen größere Veränderungen der thermodynamischen und kinetischen Größen, was in enger Übereinstimmung mit den beobachteten Unterschieden ihrer biologischen Aktivität steht.
  相似文献   

16.
Whereas many studies have been reported on the reactions of aliphatic hydrocarbons, the chemistry of cyclic hydrocarbons has not been explored extensively. In the present work, a theoretical study of the gas-phase unimolecular decomposition of cyclic alkyl radicals was performed by means of quantum chemical calculations at the CBS-QB3 level of theory. Energy barriers and high-pressure-limit rate constants were calculated systematically. Thermochemical data were obtained from isodesmic reactions, and the contribution of hindered rotors was taken into account. Classical transition state theory was used to calculate rate constants. The effect of tunneling was taken into account in the case of CH bond breaking. Three-parameter Arrhenius expressions were derived in the temperature range of 500-2000 K at atmospheric pressure, and the CC and CH bond breaking reactions were studied for cyclic alkyl radicals with a ring size ranging from three to seven carbon atoms, with and without a lateral alkyl chain. For the ring-opening reactions, the results clearly show an increase of the activation energy as the pi bond is being formed in the ring (endo ring opening) in contrast to the cases in which the pi bond is formed on the side chain (exo ring opening). These results are supported by analyses of the electronic charge density that were performed with Atoms in Molecules (AIM) theory. For all cycloalkyl radicals considered, CH bond breaking exhibits larger activation energies than CC bond breaking, except for cyclopentyl for which the ring-opening and H-loss reactions are competitive over the range of temperatures studied. The theoretical results compare rather well with the experimental data available in the literature. Evans-Polanyi correlations for CC and CH beta-scissions in alkyl and cycloalkyl free radicals were derived. The results highlight two different types of behavior depending on the strain energy in the reactant.  相似文献   

17.
Two causes for the kinetic compensation effect (KCE) were recognized for a given solidstate reaction at various heating rates. One is due to any change in the range of reaction. This KCE is quantitative and meaningful, provided thatF() remains constant under the given conditions. The other is due to misestimation of the appropriate rate law, which in turn leads to a superficial KCE. It was also shown that the existence of an isokinetic point does not necessarily imply the occurrence of a meaningful KCE.
Zusammenfassung Für den kinetischen Kompensationseffekt (KCE) für eine gegebene Feststoffreaktion bei verschiedenen Aufheizgeschwindigkeiten wurden zwei Gründe angegeben. Der eine Grund steht in Beziehung zur Änderung der Reaktionstemperatur. Dieser KCE ist quantitativ und von Bedeutung, vorausgesetzt, daßF() unter den gegebenen Bedingungen konstant bleibt. Der andere liegt in der falschen Aufstellung des entsprechenden Geschwindigkeitsgesetzes. Es wurde weiterhin gezeigt, daß die Existenz eines isokinetischen Punktes nicht zwangsweise das Auftreten eines bedeutenden KCE beinhaltet.
  相似文献   

18.
19.
The mesoionic compounds are pentagonal heterocyclic betaines with their potential use mainly in the pharmacology field due to the diversity of their biological activities. Their exceptional electric properties lead the compounds to be investigated in the field such as the nonlinear optical devices. In this study, five mesoionic compounds of the 1,3-thiazole-5-thiolate system had been synthesized from amino acids derived from glycine through 1,3-dipolar cycloaddition/cycloreversion reaction. The compounds were characterized by the use of infrared spectrometry, thermogravimetry and differential scanning calorimetry techniques. Thermal stability of each structure was determined and characterized by the kinetic study of the thermal decomposition by non-isothermal thermogravimetry. The DSC curves for MI-1, MI-2, MI-3, MI-4, and MI-5 demonstrated their fusion and subsequent decomposition with the exception of MI-3, which presented only decomposition stages. The kinetic models that better described the thermal decomposition mechanism of the mesoionic compounds achieved by the non-isothermal methods were R1, R2 and R3 (based on the geometric models).  相似文献   

20.
Summary Pyrrolidinedithiocarbamate (Pyr), piperidinedithiocarbamate (Pip), morpholinedithiocarbamate (Mor) and diethanolaminedithiocarbamate (DEDC) ammonium salts; pyrrolidinedithiocarbamic acid-pyrrolidineammonium salt (HPyrPyr), piperidinedithiocarbamic acid-piperidineammonium salt (HPipPip), morpholinedithiocarbamic acid-morpholineammonium salt (HMorMor), hexamethylenedithiocarbamic acid-hexamethyleneammonium salt (HHexHex), diethanolaminedithiocarbamic acid-diethanolamineammonium salt (HDEADEDC) were synthesized, characterized by IR and elemental analysis and their thermal behaviours were investigated using thermogravimetry (TG) and differential scanning calorimetry (DSC).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号