首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2,5-Dimethyl-3,4-dihydro-2H-pyran-2-carboxyaldehyde (methacrolein dimer) gave a polymer consisting of only recurring bicyclic structure of 1,4-dimethyl-6,8-dioxa-bicyclo-[3,2,1] octane with the use of Lewis acid and protonic acid as catalyst at room temperature. On the other hand, the polymer obtained by using BF3·(C2H5)2O under ?78°C. was found to have the structures produced by the aldehyde group polymerization as well as the bicyclic ones. The polymer obtained at ?40°C. had a low decomposition temperature (164°C.) owing to the presence of polyacetal group, whereas the fully saturated bicyclic polymer had a considerably high one (346°C.). The main factors affecting the polymerization were polymerization temperature and catalyst. Lowering temperature increased the polymerization of the aldehyde group. Anionic catalysts and weak cationic catalyst such as Al(C2H5)3? H2O, which were active catalysts for acrolein dimer, did not initiate the polymerization of methacrolein dimer. The fact that the relative viscosity of the polymer increased with polymerization time shows the polymerization of this monomer is a successive reaction.  相似文献   

2.
Electrophilic trisubstituted ethylene monomers, some ring‐substituted 2‐phenyl‐1,1‐dicyanoethylenes, RC6H4CH?C(CN)2 (where R is 3‐C6H5O, 4‐C6H5O, 3‐C6H5CH2O, 4‐C6H5CH2O, 4‐CH3CO2, 4‐CH3CONH, 4‐(C2H5)2N) were synthesized by piperidine catalyzed Knoevenagel condensation of ring‐substituted benzaldehydes and malononitrile, and characterized by CHN elemental analysis, IR, 1H‐ and 13C‐NMR. Novel copolymers of the ethylenes and vinyl acetate were prepared at equimolar monomer feed composition by solution copolymerization in the presence of a radical initiator (ABCN) at 70°C. The composition of the copolymers was calculated from nitrogen analysis, and the structures were analyzed by IR, 1H and 13C‐NMR, GPC, DSC, and TGA. High T g of the copolymers, in comparison with that of polyvinyl acetate, indicates a substantial decrease in chain mobility of the copolymer due to the high dipolar character of the trisubstituted ethylene monomer unit. The gravimetric analysis indicated that the copolymers decompose in the 190–700°C range.  相似文献   

3.

Electrophilic trisubstituted ethylene monomers, ring‐substituted 2‐cyano‐N,N‐dimethyl‐3‐phenyl‐2‐propenamides, RC6H4CH?C(CN)CON(CH3)2 (where R is 4‐(CH3)2N, 4‐CH3CO2, 4‐CH3CONH, 2‐CN, 3‐CN, 4‐CN, 4‐(C2H5)2N) were synthesized by potassium hydroxide catalyzed Knoevenagel condensation of ring‐substituted benzaldehydes and N,N‐dimethyl cyanoacetamide, and characterized by CHN elemental analysis, IR, 1H‐ and 13C‐NMR. Novel copolymers of the ethylenes and styrene were prepared at equimolar monomer feed composition by solution copolymerization in the presence of a radical initiator, ABCN at 70°C. The composition of the copolymers was calculated from nitrogen analysis, and the structures were analyzed by IR, 1H and 13C NMR, GPC, DSC, and TGA. High Tg of the copolymers in comparison with that of polystyrene indicates a substantial decrease in chain mobility of the copolymer due to the high dipolar character of the trisubstituted ethylene monomer unit. The gravimetric analysis indicated that the copolymers decompose in the 300–450°C range.  相似文献   

4.
The plasma polymerization of allylamine in an inductively coupled rf plasma reactor is analyzed by Fourier transform infrared spectroscopy. Comparison of the infrared spectra of the as-received monomer and the plasma polymerized film reveals a conversion of the primary amine in the monomer (? CH2? NH2) to an imine (? CH?NH) and a nitrile (C?N). Plasma polymerization of ethylenediamine yields the same results, suggesting that this polymerization scheme may be typical of primary amines. Increasing the plasma power seems to increase the proportion of nitrile groups in relation to the imine groups. The infrared spectra of the vapor phase polymerized monomer was similar to that of the substrate-grafted allylamine film implying a similar structure. Aging of this vapor phase polymer at 120°C for 1 h in vacuum and at 295°C for 15 min in an oxygen free environment reveals nitrile group reaction similar to that observed in polyacrylonitrile. Thermogravimetric analyses of the vapor phase polymers in a nitrogen atmosphere at 20°C/min demonstrated the thermal stability, with the polymer produced at a plasma power level of 50 W retaining 20% of its weight at 1000°C. This was better than the stability shown by the polymer produced at 150 W and is attributed to the ease of nitrile group polymerization in the former.  相似文献   

5.
Polymerization of butadiene sulfone (BdSO2) by various catalysts was studied. Azobisisobutyronitrile (AIBN), butyllithium, tri-n-butylborn (n-Bu)3B, boron trifluoride etherate, Ziegler catalyst, and γ-radiation were used as catalysts. Butadiene sulfone did not polymerize with these catalysts at low temperatures (below 60°C.), but polymers were obtained at high temperature with AIBN or (n-Bu)3B. The polymerization of BdSO2 initiated by AIBN in benzene at 80–140°C. was studied in detail. The obtained polymers were white, rubberlike materials and insoluble in organic solvents. The polymer composition was independent of monomer and initiator concentrations and reaction time. The sulfur content in polymer decreased with increasing polymerization temperature. The polymers prepared at 80 and 140°C. have the compositions (C4H6)1.55- (SO2) and (C4H6)3.14(SO2), respectively, and have double bonds. These polymers were not alternating copolymers of butadiene with sulfur dioxide. The polymerization mechanism was discussed from polymerization rate, polymer composition, and decomposition rate of BdSO2. From these results, the polymerization was thought to be “decomposition polymerization,” i.e., butadiene and sulfur dioxide, formed by the thermal decomposition of BdSO2, copolymerized.  相似文献   

6.
The Cs‐symmetry hafnium metallocene [(p‐Et3Si)C6H4]2C(2,7‐di‐tert‐BuFlu)(C5H4)Hf(CH3)2 and tetrakis(pentafluorophenyl) borate dimethylanilinium salt ([B(C6F5)4]?[Me2NHPh]+) were used as the catalytic system for the polymerization of higher α‐olefins (from hexene‐1 to hexadecene‐1) in toluene at 0 °C. The evolution of the polymerization was studied regarding the variation of the molecular weight, molecular weight distribution and yield with time. The effect of the monomer structure on the polymerization kinetics was established. The role of trioctylaluminum in accelerating the polymerization was investigated. 13C NMR spectroscopy was used to study the microstructure of the poly(α‐olefins) by the determination of the pentad monomer sequences. The thermal properties of the polymers were obtained by differential scanning calorimetry, DSC. The results were discussed in connection with the polymer microstructure. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4314–4325, 2009  相似文献   

7.
The dominant products from the polymerization of butene-2 in CH2Cl2 at ?25°C with BF3CH3OH as catalyst are C10, C12, and C14 olefins. Formed in lesser amounts are C9 and C13 olefins but C57 and C11 olefins have not been detected. The few products so far identified retain the basic butene-2 structure suggesting that the anomalous products may not be formed in a typical carbonium-ion-type rearrangement reaction but perhaps arise in a fission process associated with the propagation and/or transfer steps in the polymerization. With propylene as monomer the normal oligomers are by far the most important products, but all fission products can be detected.  相似文献   

8.

Electrophilic trisubstituted ethylene monomers, alkoxy ring‐substituted 2‐cyano‐N,N‐dimethyl‐3‐phenyl‐2‐propenamides, RC6H4CH?C(CN)CON(CH3)2 (where R is 2‐OCH3, 3‐OCH3, 4‐OCH3, 2‐OCH2CH3, 3‐OCH2CH3, 4‐OCH2CH2CH3, 4‐OCH2CH2CH2CH3), were synthesized by potassium hydroxide catalyzed Knoevenagel condensation of ring‐substituted benzaldehydes and N,N‐dimethyl cyanoacetamide, and characterized by CHN elemental analysis, IR, 1H‐ and 13C‐NMR. Novel copolymers of the ethylenes and styrene were prepared at equimolar monomer feed composition by solution copolymerization in the presence of a radical initiator, ACBN at 70°C. The composition of the copolymers was calculated from nitrogen analysis, and the structures were analyzed by IR, 1H and 13C NMR, GPC, DSC, and TGA. High Tg of the copolymers in comparison with that of polystyrene indicates a substantial decrease in chain mobility of the copolymer due to the high dipolar character of the trisubstituted ethylene monomer unit. The gravimetric analysis indicated that the copolymers decompose in the 300–450°C range.  相似文献   

9.
Thermal decomposition of hexafluorophosphates of short-chain tetraalkylammonium salts of the general formula R3R’NPF6, where R3 = R’ = CH3, C2H5, C4H9; R3 = C2H5, R’ = CH2C6H6 or CH2CH=CH2, was studied by thermal gravimetric analysis. Measurements were performed in air in the temperature interval 20–500°C. The thermal stability of halides with the same cations in the same temperature interval was studied for comparison. The effect of cation on the thermal stability of the halides and hexafluorophosphates was examined. The mechanism of thermal decomposition of quaternary ammonium hexafluorophosphates was suggested.  相似文献   

10.
The anionic polymerization of three monomers, 2-isopropenyl-4,5-dimethyloxazole(I), 2-isopropenylthiazole(II), and 2-isopropenylpyridine(III), was studied in THF. These monomers produced red-colored living polymers on addition of sodium naphthalene or living α-methylstyrene tetramer as an initiator. It was observed that a considerable amount of monomer remained in the respective living polymer–monomer system, indicating that an equilibrium between the polymer and the monomer existed as in the case of α-methylstyrene. At lower temperatures, the conversion of the monomer to the polymer increased. The equilibrium monomer concentrations [Me] were determined at different temperatures, and the heats (ΔH) and the entropies (ΔS°) of polymerization were obtained by plotting In(1/[Me]) against 1/T as ΔH = ?9.4, ?6.8, and ?6.2 kcal/mole, ΔS°S = ?22.9, ?16.5, and ?16.6, eu for I, II, and III, respectively.  相似文献   

11.
Commercial polystyrene has been chemically modified with 4,4-dinitro valeryl chloride by use of Friedel–Crafts acylation reaction in the presence of anhydrous aluminum chloride in a mixture of 1,2-dichloroethane and nitrobenzene. The modified polystyrene containing –COCH2CH2C(NO2)2CH3 fragments in side phenyl rings, named gem-dinitro valerylated polystyrene (GDN-PS), was characterized by an Ubbelohde’s viscometer, FTIR, and 1H NMR spectroscopy. Simultaneous thermogravimetry–differential thermal analysis and differential scanning calorimetry (DSC) have been used to study thermal behavior of the polymer. The results of TG analysis revealed that the main thermal degradation for the GDN-PS occurs during two temperature ranges of 200–300 and 300–430 °C. The DTA curve of GDN-PS is showing a visible exothermic peak at 253.8 °C corresponding to the decomposition of gem-dinitro valeryl groups. The decomposition kinetic of the gem-dinitro groups for GDN-PS with degree of substitution (DS) 11 % was studied by non-isothermal DSC under various heating rates. Kinetic parameters such as activation energy and frequency factor for thermal decomposition of GDN-PS with DS 11 % were evaluated via the ASTM E698 and two isoconversional methods.  相似文献   

12.

Electrophilic trisubstituted ethylene monomers, alkyl and alkoxy ring‐disubstituted 2‐phenyl‐1,1‐dicyanoethylenes, RC6H3CH?C(CN)2 (where R is 2,4‐(CH3)2, 2,5‐(CH3)2, 2,3‐(CH3O)2, 2,4‐(CH3O)2, 2,5‐(CH3O)2, 3,4‐(CH3O)2, 3‐C2H5O‐4‐CH3O, 4‐CH3O‐3‐CH3), were synthesized by piperidine catalyzed Knoevenagel condensation of ring‐disubstituted benzaldehydes and malononitrile, and characterized by CHN elemental analysis, IR, 1H‐ and 13C‐NMR. Novel copolymers of the ethylenes and vinyl acetate were prepared at equimolar monomer feed composition by solution copolymerization in the presence of a radical initiator (ABCN) at 70°C. The composition of the copolymers was calculated from nitrogen analysis, and the structures were analyzed by IR, 1H and 13C‐NMR, GPC, DSC, and TGA. High T g of the copolymers, in comparison with that of polyvinyl acetate, indicates a substantial decrease in chain mobility of the copolymer due to the high dipolar character of the trisubstituted ethylene monomer unit. The gravimetric analysis indicated that the copolymers decompose in the 190–700°C range.  相似文献   

13.
Dimerization reactions of diphenyldiazomethane have been applied to the polycondensation of six bisdiazobenzyl arylenes, namely 1,4- and 1,3-bis(α-diazobenzyl)-benzenes C6H5CN2? (C6H4)? CN2C6H5; 1,4- and 1,3-bis(α-diazo-p-methoxybenzyl)-benzenes, p,p′-MeO? C6H4? CN2? (C6H4)? CN2C6H4? OMe; 4,4′-bis(α-diazobenzyl)-diphenylmethane, C6H5CN2? (C6H4CH2C6H4)? CN2C6H5; and 4,4′-bis(α-diazobenyl)-diphenyl ether, C6H5CN2? (C6H4? O? C6H4)CN2C6H5. Depending on the nature of the catalysts, polyene-arylenes (? C(Ar)?C(Ar)? C6H4)n, and polyazine-arylenes, (? C(Ar)?N? N? C(Ar)? C6H4? )n, can be obtained selectively by acid-catalyzed decomposition of these bisdiazoalkanes at room temperature. With perchloric acid and with arylsulfonic acids in strong polar media, polyene-arylenes are formed. On the other hand, boron trifluoride and arylsulfonic acids in solvents of low dielectric constant afford polyazine-arylenes. Less selective is the thermal decomposition at 75°C in toluene solution; it gives a polymer containing about 90% azine and 10% olefinic groups. All these polymers are soluble in common solvents. Their molecular weight vary from 3 200 to 5 000, i.e., X?n from 12 to 20. The polyene-arylenes are very stable and decompose only around 500°C; the polyazine-arylenes are less stable and decompose around 370°C by losing nitrogen.  相似文献   

14.
Five acrylic esters having different fluorine contents and distributions in their side-groups (i.e., CH2=CHC(O)OR, where R = ? C(CH3)2C6F4H, ? C(CH3)2C6F5, ? C(CF3)2C6F5, ? C(CF3)2C6H5, and ? C(CH3)2C6H5) have been prepared from the reactions of the lithium salts of their corresponding alcohols with acryloyl chloride. These monomers are polymerized under identical conditions by the radical initiator AIBN and five polyacrylates were prepared having the structure of ? [ ? CH2CHC(O)OR? ]n? . These addition polymers were compared and fully characterized by GPC, VPO, DSC, TGA, NMR, IR, and UV-visible spectroscopies, and they showed potential for practical applications. Significant differences in their thermal stabilities were found with respect to fluorine contents and distributions in these polyacrylates, and the highest stability arises from CF3 substitutions in the side-chains of the polymers. © 1994 John Wiley & Sons, Inc.  相似文献   

15.
Triorganoantimony and Triorganobismuth Derivatives of 2-Pyridinecarboxylic Acid and 2-Pyridylacetic Acid. Crystal and Molecular Structures of (C6H5)3Sb(O2C-2-C5H4N)2 and (CH3)3Sb(O2CCH2-2-C5H4N)2 Triorganoantimony and triorganobismuth dicarboxylates R3M(O2C-2-C5H4N)2 (M = Sb, R = CH3, C6H5, 4-CH3OC6H4; M = Bi, R = C6H5, 4-CH3C6H4) and (CH3)3Sb(O2CCH2-2-C5H4N)2 have been prepared from (CH3)3Sb(OH)2, R3SbO (R = C6H5, 4-CH3OC6H4), or R3BiCO3 (R = C6H5, 4-CH3C6H4) and the appropriate heterocyclic carboxylic acid. Vibrational spectroscopic data indicate a trigonal bipyramidal environment of M the O(? C)-atoms of the carboxylate ligands being in the apical and three C atoms (of R) in the equatorial positions; in addition coordinative interaction occurs in the 2-pyridinecarboxylates between M and O(?C) of one and N of the other carboxylate ligand and in (CH3)3)Sb(O2CCH2-2-C5H4N)2 between Sb and O(?C) of both carboxylate ligands. (C6H5)3Sb(O2C-2-C5H4N)2/(CH3)3Sb(O2CCH2-2-C5H4N)2 crystallize monoclinic [space group P21/c/P21/n; a = 892.6(9)/1043.4(6), b = 1326.9(6)/3166.2(18), c = 2233.1(9)/1147.5(7) pm, β = 99.74(8)°/97.67(5)° Z = 4/8; d(calc.) = 1.522/1.553 × Mg m?3; Vcell = 2606.7 × 106/3757.0 × 106pm3, structure determination from 3798/4965 independent reflexions (F ≥ 4.0 σ(F))/(I ≥ 1.96 σ(I), R(unweighted) = 0.024/0.036]. Sb is bonding to three C6H5/CH3 groups in the equatorial plane [mean distances Sb? C: 212.2(3)/208.7(6) pm] and two carboxylate ligands via O in the apical positions [Sb? O distances: 218.5(2), 209.9(2)/212.1(3), 213.2(3) pm]. In (C6H5)3Sb(O2C-2-C5H4N)2 there is a short Sb? O(?C) and a short Sb? N contact [Sb? O: 272.1(2), Sb? N: 260.2(2) pm] and distoritions of the equatorial angles [C? Sb? C: 99.2(1)°, 158.2(1)°, 102.0(1).] and of the axial angle [O? Sb? O: 169.9(1)°], and in (CH3)3Sb(O2CCH2-2-C5H4N)2, which contains two different molecules in the asym-metric unit, there are two Sb? O(?C) contacts [Sb? O, mean: 302.2(4), and 310.7(4)pm, respectively] and distortions of the equatorial angles [C? Sb? C: 114.5(2)°, 132.4(3)° 113.1(2)°, and 123.9(3)° 115.5(2)°, 120.6(3)°, respectively] and of the axial angles [O? Sb? O: 174,9(1)°, 177.9(1)°, respectively].  相似文献   

16.
The polymerization of isobutylene has been investigated by the use of the steady, slow, continuous monomer addition technique in the presence of a variety of initiating systems, i.e., “H2O”/TiCl4, “H2O”/AlCl3, C6H5C(CH3)2Cl/TiCl4, p-ClCH2 C6(CH3)4* CH2Cl/AlCl3 at -50°C. Quasiliving polymerizations have been obtained with the “H2O” and C6H5(CH3)2Cl/TiC14 systems in 60/40 v/v n-hexane/methylene chloride solvent mixtures with very slow monomer input. After a brief “flash” polymerization, the M n of PIB increased linearly with the cumulative amount of monomer added (consumed); however, the number of polymer molecules formed also increased, indicating the presence of chain transfer to monomer. With the “H2O”/TiCl4 initiating system, M n,max was 56,000 and M w /M n < 2.0. By the use of the C6H5C(CH3)2CL/TiCl4 initiating system, quasiliving polymerization has been achieved and chain transfer could virtually be eliminated.  相似文献   

17.
An exothermic phenomenon and a simultaneous rapid evolution of a small amount of carbon dioxide at ?500°C during thermal decomposition of hydromagnesite 4 MgCO3 · Mg(OH)2 · 4 H2O was studied by isothermal DSCTG in a carbon dioxide atmosphere. It was quantitatively confirmed that the exothermic phenomenon was due to crystallization of MgCO3 from the amorphous phase and that the evolution of carbon dioxide was due to decomposition of the MgCO3 by the heat of crystallization (?3.4 kcal mole?1.  相似文献   

18.
The melting diagram of the system (CH3)4NF? HF was studied between 50 and 100 mole-% HF and from ?185°C to the respective liquidus temperatures (at most 162°C) by difference thermal analysis aided by temperature-dependent X-ray powder diffraction. The system was found to be quasi-binary with the HF-rich intermediary stable compounds (CH3)4NF · 2 HF (melting point 110°C), (CH3)4NF · 3 HF (20°C, decomposition), (CH3)4NF · 5 HF (?76°C, decomposition), and (CH3)4NF · 7 HF (?110°C, decomposition), most of which undergo solid-solid phase transitions. Crystal structures were determined of the low-temperature form of (CH3)4NF · 2 HF (stable below 83°C, orthorhombic, space group Pbca, Z = 8 formula units per unit cell), the high-temperature form of (CH3)4NF · 3 HF (stable above ?87°C, monoclinic, P2/c, Z = 4), and of (CH3)4NF · 5 HF (tetragonal, I4 , Z = 2). The structures are those of poly(hydrogen fluorides) (CH3)4N[HnFn+1] with homologous anions [H2F3]?, [H3F4]?, and [H5F6]?, respectively, formed by strong hydrogen bonding F? H…?F. The anion [H5F6]? is the first one of this composition established by crystal structure analysis. Its structure can be written as [(FH)2FHF(HF)2]? with four equivalent terminal hydrogen bonds of 248.4 pm and a very short central one of 226.6 pm (F…?F distances) through a 4 point of the space group.  相似文献   

19.
Characterization, thermal stability, and thermal decomposition of alkaline earth metal mandelates, M(C6H5CH(OH)CO2)2, (M = Mg(II), Ca(II), Sr(II), and Ba(II)), were investigated employing simultaneous thermogravimetry and differential thermal analysis or differential scanning calorimetry, (TG–DTA or TG–DSC), infrared spectroscopy (FTIR), complexometry, and TG–DSC coupled to FTIR. All the compounds were obtained in the anhydrous state and the thermal decomposition occurs in three steps. The final residue up to 585 °C (Mg), 720 °C (Ca), and 945 °C (Sr) is the respective oxide MgO, CaO, and SrO. For the barium compound the final residue up to 580 °C is BaCO3, which is stable until 950 °C and above this temperature the TG curve shows the beginning of the thermal decomposition of the barium carbonate. The results also provide information concerning the thermal behavior and identification of gaseous products evolved during the thermal decomposition of these compounds.  相似文献   

20.
Sorption of He, H2, N2, O2, Ar, CH4, C2H6, and C2H6 in polybutadiene and the dilation of the polymer due to sorption of the gases are investigated over the pressure range 0-50 atm at 25°C. For CO2 the measurements are made at temperatures ranging from 15 to 80°C. Partial molar volumes of the gases in the polymer are determined. The temperature dependence of partial molar volume is discussed on the basis of the data for CO2. The Flory-Huggins interaction parameters of CO2, C2H4, and C2H6 are also estimated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号