首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Singlet oxygen, generated chemically or photogenetically, reacts with biadamantylidene to give the corresponding dioxetane and epoxide only. When methylene blue (MB) or meso-tetraphenylporphin (m-TPP) is used as sensitizer the normal reaction course occurs giving dioxetane as the preponderant product in 2-propanol, ethyl acetate, acetone, pinacolone, methylene chloride, chloroform, carbon tetrachloride and benzene, although in the last two solvents some 10–25% of epoxide is formed. When erythrosin and rose bengal (RB) are used, epoxide becomes the main product (70–95%). Epoxide does not derive from chemical reaction with the solvent. Pinacolone, for example, is not oxidized to t-butyl acetate. The rose bengal reaction involves both singlet oxygen and radicals, since diazabicyclooctane (DABCO) and di-t-butyl-p-cresol interfere with the oxidation. A mechanistic scheme is proposed in which sensitizer and oxygen combine to produce sensitizer radical cation and superoxide radical anion. Subsequently, hydroperoxy radical, deriving from superoxide, reacts with substrate to give epoxide and hydroxy radicals. The latter adds to substrate to give a new radical which captures triplet oxygen. Epoxide is formed by loss of hydroperoxy radical and the chain starts anew. The dioxetane is formed separately either by [2+2]-cycloaddition or stepwise addition.  相似文献   

2.
Abstract— Benzoporphyrin derivative monoacid ring A (BPD-MA), a chlorin-type molecule, is a new photosensitizer currently in phase II clinical trials for the treatment by pho-todynamic therapy of cancerous lesions, psoriasis and pathologic neovascularization. The photochemistry (type I and/or II) of BPD-MA has been studied in homogeneous solution and in aqueous dispersions of unilamellar liposomes of dipalmitoylphosphatidylcholine (DPPC) using electron paramagnetic resonance and spectrophotometric methods. When oxygen-saturated solutions of BPD-MA were illuminated with 690 nm light, singlet oxygen (1O2), superoxide anion radical (O2?), hydroxyl radical (OH) and hydrogen peroxide (H2O2) were formed. The BPD-MA generates 1O2 with a quantum yield of ca 0.81 in ethanolic solution. The quantum yield does not change upon incorporation of BPD-MA into liposomes of DPPC. The superoxide anion radical was generated by the BPD-MA anion radical (BPD-MA?) via electron transfer to oxygen, and this process was significantly enhanced by the presence of electron donors. The rate of production of 02 was also dependent on the concentration of BPD-MA used (3-100 μM). The quantum yield of O2?was found to be 0.011 and 0.025 in aqueous solution and DPPC liposomes, respectively. Moreover, O2_upon dis-proportionation can generate H2O2 and ultimately the highly reactive OH via the Fenton reaction. In anaerobic homogeneous solution, BPD-MA?was predominantly photoproduced via the self-electron transfer between the excited- and ground-state species. The presence of an electron donor significantly promotes the reduced form of BPD-MA. These findings suggest that the photodynamic action of BPD-MA may proceed via both type I and type II mechanisms.  相似文献   

3.
Thanks to the superior redox potential of platinum(II) complex compared with that of Ru(bpy)32+ in the excited state, an efficient and selective visible‐light‐induced CDC reaction has been developed by using a catalytic amount (0.25 %) of 1 . With the aid of FeSO4 (2 equiv), the corresponding amide could not be detected under visible‐light irradiation (λ=450 nm), but the desired cross‐coupling product was exclusively obtained under ambient air conditions. A spectroscopic study and product analysis revealed that the CDC reaction is initiated by photoinduced electron‐transfer from N‐phenyltetrahydroisoquinoline to the complex. An EPR (electron paramagnetic resonance) experiment provides direct evidence on the generation of superoxide radical anion (O2? . ) rather than singlet oxygen (1O2) under irradiation of the reaction system, in contrast to that reported in the literature. Combined, the photoinduced electron‐transfer and subsequent formation of superoxide radical anion (O2? . ) results in a clean and facile transformation.  相似文献   

4.
Mechanism of the Photooxidation of 5,6-Dihydro-1,3-dimethyl-6-thioxopteridine-2,4(1H,3H)-dione The mechanism of the photooxidation of 5,6-dihydro-1,3-dimethyl-6-thioxopteridine-2,4(1H,3H)-dione ( 9 ) has been investigated in dependence of the pH. Photooxidation of the anion species in weak alkaline solution takes place by singlet oxygen as well as the superoxide radical anion forming 1,2,3,4-tetrahydro-1,3-dimethyl-2,4-dioxopteridine-6-sulfinate ( 5 ) as the first detectable reaction product. In acidic medium, a more complex photooxidation process is observed leading, in a radical-chain mechanism, to 6,6′-dithiobis[1,3-dimethylpteridine-2,4(1H,3H)-dione] ( 6 ).  相似文献   

5.
The main emitters of radiation in the aerobic oxidation of lignin are the carbonyl groups in an excited state and singlet oxygen. It has been shown that the main source of O2(1Δ) may be the radical anion O?·2. Singlet oxygen and the radical anion are by-products of the radical oxidation of lignin.  相似文献   

6.
The brominated flame retardant 3,3′,5,5′‐tetrabromobisphenol A (TBBPA) may accumulate in the environment, including surface waters, and degrade there to potentially toxic products. We have previously shown that singlet oxygen (1O2), produced by irradiation of rose bengal with visible light, oxidizes Triton X‐100‐solubilized TBBPA to yield the 2,6‐dibromo‐p‐benzosemiquinone anion radical while consuming oxygen (Environ. Sci. Technol. 42 , 166, 2008). Here, we report that a similar 1 O 2 ‐induced oxidation can be initiated in aqueous solutions by the irradiation of TBBPA dissolved in a humic acid (HA) solution. HA is a known weak 1 O 2 photosensitizer and we indeed detected the infrared 1 O 2 phosphorescence from HA preparations in D 2 O. When an aqueous preparation of HA was irradiated (λ > 400 nm) in the presence of TBBPA, oxygen was consumed, and the 2,6‐dibromo‐ p ‐benzosemiquinone anion radical was generated and detected using electron paramagnetic resonance. Radical formation and oxygen consumption were inhibited by sodium azide, a singlet oxygen quencher. Our results suggest that solar radiation, in the presence of HA, may play an important role in the photodegradation of TBBPA in the aquatic environment.  相似文献   

7.
α‐Methylstyrene ( 1 ) was photo‐oxidized in the presence of a series of alkylated dimethoxybenzenes as sensitizers in an oxygen‐saturated MeCN solution to afford the cleaved ketone 2 , epoxide 3 , as well as a small amount of the ene product 4 in ca. 1 : 1 : 0.04 ratio. The relative rate of conversion was well‐correlated with the fluorescence quantum yield of sensitizers. Thus, a non‐singlet‐oxygen mechanism is proposed, in which an excited sensitizer is quenched by (ground‐state) molecular oxygen to produce a sensitizer radical cation and a superoxide ion (O), the former of which oxidizes the substrate, while the latter reacts with the resulting olefin radical cation ( 1 + .) to give the major oxidation products. Photodurability of such electron‐donating sensitizers is dramatically improved by substituting four aromatic H‐atoms in 1,4‐dimethoxybenzene with Me or fused alkyl groups, which provides us with an environmentally friendly, clean method of photochemical functionalization with molecular oxygen, alternative to the ene reaction via singlet oxygenation.  相似文献   

8.
 To explore the interactions between ubiquinones and oxygen in living organisms, the thermodynamics of a series of electron and hydrogen transfer reactions between semiquinone radicals, as well as their corresponding protonated forms, and oxygen, singlet or triplet, were studied using the hybrid Hartree–Fock–density functional theory method Becke's three parameter hybrid method with the Lee, Yang, and Parr correlation functional. Effects of the solvent and of the isoprenyl tail on the electron and hydrogen transfer reactions were also investigated. It is found that semiquinone radicals (semiquinone anion radicals or protonated semiquinone radicals) cannot react with triplet oxygen to form the superoxide anion radical O2 . In contrast, neutral quinones can scavenge O2 efficiently. In the gas phase, only protonated semiquinone radicals can react spontaneously with singlet oxygen to produce peroxyl radical (HO2). However, both semiquinone anion radicals and protonated semiquinone radicals can react with singlet oxygen to produce harmful oxygen radicals (O2 a l l b u l l and HO2, respectively) in aqueous and protein environments. The free-energy changes of the corresponding reactions obtained for different ubiquinone systems are very similar. It clearly shows that the isoprenyl tail does not influence the electron and hydrogen transfer reactions between semiquinone radicals and oxygen significantly. Results of electron affinities, vertical ionization potentials, and proton affinities also show that the isoprenyl tail has no substantial effect on the electronic properties of ubiquinones. Received: 3 July 2000 / Accepted: 6 September 2000 / Published online: 21 December 2000  相似文献   

9.
Novel 7‐substituted 6‐oxo‐6,9‐dihydro[1,2,5]selenadiazolo[3,4‐h]quinoline ( SeQ(1–6) ) and 8‐substituted 9‐oxo‐6,9‐dihydro[1,2,5]selenadiazolo[3,4‐f ]quinoline derivatives ( SeQN(1–5) ) with R7, R8 = H, COOC2H5, COOCH3, COOH, COCH3 or CN were synthesized and their spectral characteristics were obtained by UV/Vis spectroscopy. Ultraviolet A photoexcitation of the selenadiazoloquinolones in dimethylsulfoxide or acetonitrile resulted in the formation of paramagnetic species coupled with molecular oxygen activation generating the superoxide radical anion or singlet oxygen, evidenced by electron paramagnetic resonance spectroscopy. The cytotoxic/photocytotoxic impact of selenadiazoloquinolones on murine and human cancer cell lines was demonstrated using the derivative SeQ5 (with R7 = COCH3).  相似文献   

10.
Abstract— The aerobic xanthine oxidase reaction causes the co-oxidation of 2,5-dimethylfuran to cis-diacetylethylene and the bleaching of rubrene tetracarboxylate. These actions were suppressed by superoxide dismutase, catalase, desferoxamine and by benzoate and other hydroxyl radical scavengers. The bleaching of rubrene tetracarboxylate was not enhanced in D20. These results suggest that OHv, generated from O2- plus H2O2 by an iron-catalyzed Haber Weiss reaction, was the responsible agent and that singlet oxygen was not detectably involved. Control experiments, in which singlet oxygen was generated photochemically, demonstrated that replacement of H2O by D2O caused the expected enhancement of the chemical reactivity of singlet oxygen under the conditions of these experiments and that O2-, at concentrations achieved by the xanthine oxidase reaction, did not detectably quench singlet oxygen. We conclude that singlet oxygen, if produced at all during the aerobic xanthine oxidase reaction, cannot exceed 0.1% of the production of O2-.  相似文献   

11.
Abstract— Laser flash photolysis studies of the production of the triplet state of the xanthene dye, rose bengal (RB), have been carried out. The reactions of this state with oxygen to form singlet oxygen and the superoxide anion radical have been observed and yields measured. Quenching of RB(T1) by oxygen leads to approximately 75% singlet oxygen and 20% superoxide. The reactivity of these species-RB(T1), O2(1Δg) and O2-—with four nucleotides and DNA have been determined. Only guanine residues showed any noticeable reaction at neutral pH. At higher pH guanine rate constants increased. The consequences to biological photodynamic processes are discussed.  相似文献   

12.
Photooxygenations of 1,2-, 1,3-, and 2,3-di- and 1,2,3-trisubstituted indolizines 1a-1f under different reaction conditions in methanol and acetonitrile have been investigated to establish the general reaction pattern and mechanism in indolizine photooxygenation in view of the influence of the ring substituents and substitution pattern. Photooxygenations of 1-acyl-2-phenylindolizines 1a and 1b and 1,3-dibenzoyl-2-phenylindolizine (1d) are self-sensitized, while those of 1-(p-nitrobenzoyl)-2-phenylindolizine (1c) and 2-phenyl-3-(p-chlorobenzoyl)indolizine (1e) need to be sensitized by rose bengal (RB) or methylene blue (MB). These reactions proceed via a singlet oxygen mechanism yet follow different pathways in methanol and in acetonitrile, with peroxidic zwitterion D (in methanol) and dioxetane E across the indolizine C2-C3 bond (in acetonitrile) as the intervening intermediates. Methanol trapping of the peroxidic zwitterion results in C3-N bond cleavage and pyrrole ring opening to give the corresponding (E)- and (Z)-3-(2-pyridinyl)-3-benzoylpropenoic acid methyl esters (2 and 3) and 4-(2-pyridinyl)-3-phenyl-5-aryl-5-hydroxyfuran-2-one (4) as products in methanol, while O-O bond homolysis of the dioxetane furnishes 3-(2-pyridinyl)-3-benzoyl-2-phenyloxirane-2-carboxaldehyde (6) and 1-(6-methyl-2-pyridinyl)-2-phenylethanedione (5) as products in acetonitrile. 3-Benzoyl-1-indolizinecarboxylic acid methyl ester (1f) is unreactive toward singlet oxygen; however, it could be photooxygenated under electron transfer conditions with 9,10-dicyanoanthracene (DCA) as a sensitizer. This reaction takes place by the combination of the indolizine cation radical with the superoxide anion radical (or molecular oxygen) to give the pyridine ring oxidized methyl 3-benzoyl-5-methoxy-8-hydroxy-1-indolizinecarboxylate (9f), dimethyl 2-(2-pyridinyl)fumarate (8f), and dimethyl 2-(2-pyridinyl)maleate (7f) as products.  相似文献   

13.
In order to evaluate the chemiluminescence (CL) reagents for selective detection of reactive oxygen species (ROS), we comprehensively measured the CL responses of 20 CL reagents (three luminol derivatives, two imidazopyrazinone derivatives, eight lophine derivatives, six acridinium ester derivatives and lucigenin) against six types of ROS (superoxide anion: O2, hydroxyl radical: OH, hydrogen peroxide: H2O2, hypochlorite anion: ClO, singlet oxygen: 1O2, and nitric oxide: NO). As a result of the screening, it was found that nine CL reagents selectively detected O2 while one CL reagent selectively detected OH. However, no CL reagent had selectivity on the detection of H2O2, ClO, 1O2 and NO. Our screening results could help to select the most suitable CL reagent for selective determination of different ROS.As an application study, 4-methoxyphenyl-10-methylacridinium-9-carboxylate (MMAC), one of the acridinium ester derivatives, showed high selectivity on the detection of O2, and thus was applied to the assay of superoxide dismutase (SOD) activity. The dynamic range and detection limit of the developed CL assay were 0.1-10 and 0.06 U mL−1, respectively. Significant correlation (r = 0.997) was observed between the results by the CL assay using MMAC and the spectrophotometric assay using 2-(4-iodophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium monosodium salt.  相似文献   

14.
Within the frame of possible precursory photoreactions in the generation of humic substances, the visible-light promoted interaction between riboflavin (Rf), a native photosensitizer in aqueous systems, and gallic acid (GA), a polyphenol naturally formed after lignin degradation, was investigated. A systematic kinetic and mechanistic study was conducted under aerobic conditions in aqueous media, through visible-light continuous photolysis, polarographic detection of oxygen uptake, stationary and time resolved fluorescence spectroscopy, time resolved near-IR phosphorescence detection and laser flash photolysis techniques. GA is degraded relatively fast in pH 7 aqueous solutions, where singlet molecular oxygen (O2(1Δg)), superoxide radical anion (O2?) and hydrogen peroxide (H2O2) – all three species photogenerated from triplet excited Rf – participate in the photoprocess. The general conclusion is that in natural waters GA can undergo spontaneous phototodegradation under environmental conditions. Radical species generated in the presence of Rf can participate in condensation or polymerization reactions promoting the natural synthesis of humic products.  相似文献   

15.
The photochemistry of 6‐(hydroxymethyl)pterin (HPT; 1 ) in aqueous solution (pH 5–6) was investigated by irradiation at 350 nm at room temperature. The photochemical reactions of the acidic form 1a were followed by UV/VIS spectrophotometry, thin‐layer chromatography (TLC), high‐performance liquid chromatography (HPLC), and enzymatic methods for the determination of the superoxide anion radical (O ) and hydrogen peroxide (H2O2). When 1a is exposed to UV‐A radiation, the intermediates 4 and 4′ are formed reacting with O2 to yield 6‐formylpterin (FPT; 5 ) and 6‐carboxypterin (CPT; 6 ) under formation of O and H2O2 (Scheme 3). The quantum yields of the disappearance of HPT ( 1a ) and of the formation of the photoproducts 5 and 6 were determined. HPT was investigated for its efficiency in singlet‐oxygen (1O2) production in acidic aqueous solution. The corresponding quantum yield of 1O2 production (ΦΔ) was 0.15 ± 0.02, as measured by the 1O2 luminescence in the near‐IR (1270 nm) upon continuous excitation of the sensitizer. However, 1O2 does not participate in the actual photooxidation of HPT ( 1a ) to FPT ( 5 ) and CPT ( 6 ).  相似文献   

16.
Ab initio quantum-chemical calculations were used to examine the thermodynamic aspects of binding of molecular oxygen and the radical anion O2 ·- with certain amino acids. It was shown that amino acids form no stable systems with molecular oxygen but form thermodynamically stable complexes with the superoxide radical anion.  相似文献   

17.
Here, 10 guidelines are presented for a standardized definition of type I and type II photosensitized oxidation reactions. Because of varied notions of reactions mediated by photosensitizers, a checklist of recommendations is provided for their definitions. Type I and type II photoreactions are oxygen‐dependent and involve unstable species such as the initial formation of radical cation or neutral radicals from the substrates and/or singlet oxygen (1O2 1?g) by energy transfer to molecular oxygen. In addition, superoxide anion radical () can be generated by a charge‐transfer reaction involving O2 or more likely indirectly as the result of O2‐mediated oxidation of the radical anion of type I photosensitizers. In subsequent reactions, may add and/or reduce a few highly oxidizing radicals that arise from the deprotonation of the radical cations of key biological targets. can also undergo dismutation into H2O2, the precursor of the highly reactive hydroxyl radical () that may induce delayed oxidation reactions in cells. In the second part, several examples of type I and type II photosensitized oxidation reactions are provided to illustrate the complexity and the diversity of the degradation pathways of mostly relevant biomolecules upon one‐electron oxidation and singlet oxygen reactions.  相似文献   

18.
The present study shows that hydroethidine (HE), used for in-vivo qualitative fluorescent detection of superoxide anion, can be also oxidized by H2O2 via non-specific peroxidase (horseradish peroxidase and myeloperoxidase) catalysis, forming fluorescent oxidation products. These products give broad excitation/emission peaks (490–495/580–600 nm) near the excitation/emission peaks (475/580 nm) of the HE-superoxide oxidation product, and this may pose serious interference problems to the fluorescent detection of the superoxide radical. The study suggests cautionary use of the HE-superoxide anion assay mainly for detection of reactive oxygen species. A byproduct of this study was the development of a simple and sensitive HE-horseradish peroxidase assay for the in-vitro quantification of H2O2 in biological tissues with a sensitivity of 1 mol L–1.  相似文献   

19.
The decomposition of dimethyldioxirane induced by the chloride anion has been investigated by methods of infrared chemiluminescence and quantum chemistry. The reaction leads to efficient generation of singlet excited molecular oxygen 1O2 (the excitation yield in acetone is 61%). A mechanism of peroxide decomposition is proposed in which the key reactions are the addition of the chloride ion to an oxygen atom of dioxirane, resulting in dioxirane ring opening and the formation of the 2-chlorooxy-2-hydroxy propane alcoholate (k 1), and the interaction of the latter with another dimethyldioxirane molecule. This interaction results either in the formation of an adduct, which further decomposes to evolve 1O2, and catalyst regeneration (k 2) or in the formation of the 2-chloroxyisopropyl radical, which leads to the irreversible consumption of the chloride ion catalyst (k 3). The decay kinetics of the infrared chemiluminescence of 1O2 has been studied in a wide range of reactant concentrations. The temperature dependence of the rate constant of the reaction of dimethyldioxirane with the chloride ion has been determined by a kinetic analysis of the mechanism proposed: log(2 k 1) = (11.1 ± 0.7) − (46 ± 4)/Θ, where Θ = 2.3RT kJ/mol. Estimation of the ratio of the rates of the reaction of the 2-chlorooxy-2-hydroxy propane alcoholate with dimethyldioxirane via two pathways (k 3/k 2) has demonstrated that the fraction of the process involving electron transfer does not exceed 1.5% under the experimental conditions examined. Nevertheless, the latter reaction, which withdraws the chloride ion from the catalytic cycle of dimethyldioxirane decomposition yielding singlet oxygen, has a marked effect on the overall kinetics of the process.  相似文献   

20.
Solar-driven selective oxygen reduction reaction on polymeric carbon nitride framework is one of the most promising approaches toward sustainable H2O2 production. Potassium poly(heptazine imide) (PHI), with regular metal sites in the framework and favorable crystalline structure, is highly active for photocatalytic selective 2e oxygen reduction to produce H2O2. By introducing NH4Cl into the eutectic KCl-LiCl salt mixture, the PHI framework exhibits a remarkable performance for photocatalytic production of H2O2, for example, a record high H2O2 photo-production rate of 29.5 μmol h−1 mg−1. The efficient photocatalytic performance is attributed to the favorable properties of the new PHI framework, such as improved porosity, negatively shifted LUMO position, enhanced exciton dissociation and charges migration properties. A mechanistic investigation by quenching and electron spin resonance technique reveals the critical role of superoxide radicals for the formation singlet oxygen, and the singlet oxygen is one of the critical intermediates towards the formation of the H2O2 by proton extraction from the ethanol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号