首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
To date only one product, biphenyl, has been reported to be produced from C(6)H(5) + C(6)H(6)/C(6)H(5) reactions. In this study, we have investigated some unique products of C(6)H(5) + C(6)H(6)/C(6)H(5) reactions via both experimental observation and theoretical modeling. In the experimental study, gas-phase reaction products produced from the pyrolysis of selected aromatics and aromatic/acetylene mixtures were detected by an in situ technique, vacuum ultraviolet (VUV) single photon ionization (SPI) time-of-flight mass spectrometry (TOFMS). The mass spectra revealed a remarkable correlation in mass peaks at m/z = 154 {C(12)H(10) (biphenyl)} and m/z = 152 {C(12)H(8) (?)}. It also demonstrated an unexpected correlation among the HACA (hydrogen abstraction and acetylene addition) products at m/z = 78, 102, 128, 152, and 176. The analysis of formation routes of products suggested the contribution of some other isomers in addition to a well-known candidate, acenaphthylene, in the mass peak at m/z = 152 (C(12)H(8)). Considering the difficulties of identifying the contributing isomers from an observed mass number peak, quantum chemical calculations for the above-mentioned reactions were performed. As a result, cyclopenta[a]indene, as-indacene, s-indacene, biphenylene, acenaphthylene, and naphthalene appeared as novel products, produced from the possible channels of C(6)H(5) + C(6)H(6)/C(6)H(5) reactions rather than from their previously reported formation pathways. The most notable point is the production of acenaphthylene and naphthalene from C(6)H(5) + C(6)H(6)/C(6)H(5) reactions via the PAC (phenyl addition-cyclization) mechanism because, until now, both of them have been thought to be formed via the HACA routes. In this way, this study has paved the way for exploring alternative paths for other inefficient HACA routes using the PAC mechanism.  相似文献   

2.
Conclusions The parameters of the Arrhenius equation for the isomerization of PhC(SPh)2H2 radicals to Ph(SPh)CH2. SPh radicals are in agreement with an intramolecular character of the rearrangement, with a 1,2-migration of the thiyl group. These parameters were calculated on the basis of the data that were obtained by the EPR method in the range 10–70°.Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 11, pp. 2596–2597, November, 1982.  相似文献   

3.
4.
Ab initio equation-of-motion coupled cluster calculations have been carried out to evaluate one-, two-, and three-bond 13C-13C, 15N-13C, 31P-13C coupling constants in benzene, pyridine, pyridinium, phosphinine, and phosphininium. The introduction of N or P heteroatoms into the aromatic ring not only changes the magnitudes of the corresponding X-C coupling constants (J, for X = C, N, or P) but also the signs and magnitudes of corresponding reduced coupling constants (K). Protonation of the heteroatoms also produces dramatic changes in coupling constants and, by removing the lone pair of electrons from the sigma-electron framework, leads to the same signs for corresponding reduced coupling constants for benzene, pyridinium, and phosphininium. C-C coupling constants are rather insensitive to the presence of the heteroatoms and protonation. All terms that contribute to the total coupling constant (except for the diamagnetic spin-orbit (DSO) term) must be computed if good agreement with experimental data is to be obtained.  相似文献   

5.
The unimolecular decomposition of C(6)H(5)OH on its singlet-state potential energy surface has been studied at the G2M//B3LYP/6-311G(d,p) level of theory. The result shows that the most favorable reaction channel involves the isomerization and decomposition of phenol via 2,4-cyclohexadienone and other low-lying isomers prior to the fragmentation process, producing cyclo-C(5)H(6) + CO as major products, supporting the earlier assumption of the important role of the 2,4-cyclohexadienone intermediate. The rate constant predicted by the microcanonical RRKM theory in the temperature range 800-2000 K at 1 Torr--100 atm of Ar pressure for CO production agrees very well with available experimental data in the temperature range studied. The rate constants for the production of CO and the H atom by O-H dissociation at atmospheric Ar pressure can be represented by k(CO) = 8.62 x 10(15) T(-0.61) exp(-37,300/T) s(-1) and k(H) = 1.01 x 10(71) T(-15.92) exp(-62,800/T) s(-1). The latter process is strongly P-dependent above 1000 K; its high- and low-pressure limits are given.  相似文献   

6.
7.
The reaction mechanism of C6H5 + C6H5NO involving four product channels on the doublet-state potential energy surface has been studied at the B3LYP/6-31+G(d, p) level of theory. The first reaction channel occurs by barrierless association forming (C6H5)2NO (biphenyl nitroxide), which can undergo isomerization and decomposition. The second channel takes place by substitution reaction producing C12H10 (biphenyl) and NO. The third and fourth channels involve direct hydrogen abstraction reactions producing C6H4NO + C6H6 and C6H5NOH + C6H4, respectively. Bimolecular rate constants of the above four product channels have been calculated in the temperature range 300-2000 K by the microcanonical Rice-Ramsperger-Kassel-Marcus theory and/or variational transition-state theory. The result shows the dominant reactions are channel 1 at lower temperatures (T < 800 K) and channel 3 at higher temperatures (T > 800 K). The total rate constant at 7 Torr He is predicted to be k(t) = 3.94 x 10(21) T(-3.09) exp(-699/T) for 300-500 K, 2.09 x 10(20) T(-3.56) exp(2315/T) for 500-1000 K, and 1.51 x 10(2) T(3.30) exp(-3043/T) for 1000-2000 K (in units of cm3 mol(-1) s(-1)), agreeing reasonably with the experimental data within their reported errors. The heats of formation of key products including biphenyl nitroxide, hydroxyl phenyl amino radical, and N-hydroxyl carbazole have been estimated.  相似文献   

8.
Ph2P-PF2Ph2 has been identified by means 19F- and 31P- NMR spectroscopy as an intermediate product of the disproportionation of Ph2PF. The disproportionation is catalyzed by acids. The reaction mechanism is discussed. PhPF2 disproportionates faster in solution in acetonitrile than neat, forming (PhP)6, instead of (PhP)5.  相似文献   

9.
Ion-molecule reactions of chromium containing ions with arylsulfides have been studied in the gas phase and their products have been characterized by tandem mass spectrometry. C6H5SH and (C6H5)2S react as typical aromatic compounds and give rise to Cr+C6H5SR] and RC6H5Cr+QH5SR′ [R = H, CH3, CH(CH3)2; R′ = H, C6H5] ions. Metastable ion mass spectra of the latter species show that the metal is more strongly bound to diphenylsulfide than to alkylbenzenes. C6H5SSC6H5 reacts with chromium-containing ions to form only Cr+(C6H5SSC6H5). The decomposition characteristics of this ion and, in particular, the presence of a recovery signal in the neutralization-reionization mass spectrum are in keeping with the formation of a 1,2-dithia[2]cyclophane complex ion, which rearranges into a structurel(s) that contains Cr?S bond(s). No evidence was found for metal atom insertion into S?S, C?S, or S?H bonds.  相似文献   

10.
Charge reversal (+CR) of cations to anions can be used to structurally differentiate isomeric C6H5+ and C6H6 hydrocarbon ions by means of tandem mass spectrometry. In view of the manifold of possible isomers, only a few prototype precursors are examined. Thus, charge inversion demonstrates that electron ionization of 2,4-hexadiyne yields an intact molecular ion, whereas the charge inversion spectra of C6H6 obtained from benzene, 1,5-hexadiyne, and fulvene are identical within experimental error. Similarly, the +CR spectrum of the C6H5+ cation generated by dissociative ionization of 2,4-hexadiyne is significantly different from the +CR spectrum of C6H5+ obtained from iodobenzene, suggesting the formation of a 2,4-hexadiynyl cation from the former precursor. Although charge inversion of cations to anions has a low efficiency and requires large precursor ion fluxes, the particular value of this method is that the spectra may not just differ in fragment ion intensities, but these differences can directly be related to the underlying ion structures.  相似文献   

11.
12.
[(C6H5CH2C5H4)2GdCl.THF]2 (1) and (C6H5CH2C5H4)2ErCl.THF (2) were prepared by the reaction of LnCl3 (Ln? Gd, Er) with benzylcyclopentadienyl sodium in THF and characterized by elemental analysis, IR, 1H NMR, 13C NMR, MS and thermal gravimetry. The crystal structures of both compounds were determined. Complex 1 is dimeric and its structure belongs to the monoclinic, P21/c space group with a=1.1432(2), b=1.2978(2), c=1.7604(3) nm, β=108.75(2), V=2.4732(9) nm3, Z=2(four monomers), Dc“1.54 g.cm?3. R=0.0342 and Rw“0.0362. Complex 2 is monomer and its structure belongs to the orthorhombic, P212121 space group with a=0.8645(2), b=1.1394(3), c=2.5289(4) nm, V=2.4919(9) nm3, Z=4, Dc“1.56 g.cm?3. R=0.0514, Rw“0.0529. The determination of the crystal structure shows that in complex 1 the benzyl groups on the cyclopentadienyls coordinated to Gd3+ are located in the opposite direction (139°); in complex 2 the benzyl groups on the cyclopentadienyls coordinated to Er3+ are located in the same direction (6.5°).  相似文献   

13.
用Grignard试剂C6H5MgBr合成苯甲醛   总被引:1,自引:0,他引:1  
苯甲醛广泛用于医药、农药、染料、香料等行业[1] 。为了寻找产率高、成本低的新合成方法 ,人们进行了广泛的研究[1 7] 。本文用Grignard试剂与苯并咪唑盐[8] 合成苯甲醛。合成路线如下 :1 实验部分XT 2型数字显微熔点仪 (温度计未经校正 ) :PE 2 40 0CHN元素分析仪 ;VarianINOVA 40 0核磁共振仪 ;试剂均为化学纯。参考文献 [9]合成Grignard试剂C6 H5MgBr,以四氢呋喃作溶剂。1 1 苯并咪唑的合成在 1 0 0ml圆底烧瓶中加入 1 0 8g(0 1mol)邻苯二胺和 8ml(0 2mol) 90 %甲酸 ,90℃下…  相似文献   

14.
15.
16.
The Crystal Structure of (C6H5)3SiSH and (C6H5)3SiSBr and the Preparation of the Iodosulfane (C6H5)3SiSI The preparation of the halogenosulfanes Ph3SiSBr and Ph3SiSI from Ph3SiSH and N-halogenosuccinimide is reported. They are characterized by vibrational spectroscopic measurements. Ph3SiSBr crystallizes in space group P1 with a = 899.3(8) pm, b = 941.3(7) pm, c = 1 051.4(7) pm, α = 109.88(5)°, β = 99.23(6)°, γ = 96.78(6)° and Z = 2. Ph3SiSH crystallizes in space group P21/c with a = 1 879.4(8), b = 966.3(5), c = 1 845.2(9), β = 107.84(4), Z = 8. The halogenosulfanes decompose in polar solvents by formation of sulphur and triphenylsilanhalide.  相似文献   

17.
Kinetics for reactions of phenoxy radical, C6H5O, with itself and with O3 were examined at 298 K and low pressure (1 Torr) using discharge flow coupled with mass spectrometry (DF/MS). The rate constant for the phenoxy radical self‐reaction was determined to be k1 = (1.49 ± 0.53) × 10−11 cm3 molecule−1 s−1 defined by d[C6H5O]/dt=−2 k1[C6H5O]2. The rate constant for the C6H5O reaction with O3 was measured to be k2 = (2.86 ± 0.35) × 10−13 cm3 molecule−1 s−1, which may be a lower limit value. Because of much higher atmospheric abundance of ozone than that of both NO and phenoxy, the reaction of C6H5O with ozone may represent the principal fate of the phenoxy radical in the atmosphere. Products from reaction of C6H5O + C6H5O, NO, and NO2 were also investigated, and (C6H5O)2 (m/e = 186), C6H5O(NO) (m/e = 123), and C6H5O(NO2) (m/e = 139) adducts were observed as products for the reactions of C6H5O with itself, NO, and NO2, respectively. © 1999 John Wiley & Sons, Inc. Int J Chem Kinet 31: 65–72, 1999  相似文献   

18.
19.
20.
The kinetics and mechanisms for the unimolecular dissociation of nitrobenzene and related association reactions C(6)H(5) + NO(2) and C(6)H(5)O + NO have been studied computationally at the G2M(RCC, MP2) level of theory in conjunction with rate constant prediction with multichannel RRKM calculations. Formation of C(6)H(5) + NO(2) was found to be dominant above 850 K with its branching ratio > 0.78, whereas the formation of C(6)H(5)O + NO via the C(6)H(5)ONO intermediate was found to be competitive at lower temperatures, with its branching ratio increasing from 0.22 at 850 K to 0.97 at 500 K. The third energetically accessible channel producing C(6)H(4) + HONO was found to be uncompetitive throughout the temperature range investigated, 500-2000 K. The predicted rate constants for C(6)H(5)NO(2) --> C(6)H(5) + NO(2) and C(6)H(5)O + NO --> C(6)H(5)ONO under varying experimental conditions were found to be in good agreement with all existing experimental data. For C(6)H(5) + NO(2), the combination processes producing C(6)H(5)ONO and C(6)H(5)NO(2) are dominant at low temperature and high pressure, while the disproportionation process giving C(6)H(5)O + NO via C(6)H(5)ONO becomes competitive at low pressure and dominant at temperatures above 1000 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号