首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
The phosphono and the tetrazolyl analogues 4 and 5 of 4-methylumbelliferyl β-D -glucuronide (=(4-methyl-2-oxo-2H-1-benzopyran-7-yl β-D -glucopyranosid)uronic acid; 6 ) were synthesized and evaluated as substrates of β-glucuronidases. Similarly, the phenylcarbamate 7 and its phosphono analogue 8 were prepared and evaluated as inhibitors. To examine the diastereoselectivity of the phosphorylation, we also synthesized the protected L -ido-D -gluco-, and D -galacto-configurated phospha-glycopyranuronates 12, 13, 21, 22, 34 and 35 . Two strategies were followed. In the first one, the glucuronic acid 19 was decarboxylated to 11 and further transformed, via 20 , into the trichloroacetimidate 10 (Scheme 2). Phosphorylation of 10 with (MeO)3P yielded the diastereoisomers 12 and 13 , the diastereoselectivity depending on the solvent. In MeCN, 12 and 13 were obtained in a ratio of 1:1, while in non-participating solvents the L -ido 12 was by far the major diastereoisomer. The acetate 11 was inert to (MeO)3P, but reacted with (PhO)3P to the anomeric mixture 21/22 , in keeping with a stabilizing 1,3-interaction in the intermediate phosphonium salt. Similarly, the phospha-galacturonates 34 and 35 were prepared from the galactoside 23 via the enol ether 26 , the lactone 27 , and the acetates 28/29 that were also transformed into the trichloroacetimidate 33 (Scheme 3). In the second, higher-yielding strategy, phosphorylation of the pentodialdehyde 39 to 40/41 was followed by hydrolysis and acetylation to the phospha-glucuronates 43/44 (Scheme 4). Transesterification to 45/46 , selective deacetylation to 48/49 , and formation of the trichloroacetimidates 50/51 were followed by glycosidation and deprotection to 4 . The tetrazole 5 was prepared from the lactones 54/55 via the N-benzylamides 57/58 that were treated with TfN3 to give the N-benzyltetrazoles 59/60 (Scheme 4). These were transformed into the trichloroacetimidates 63/64 , glycosylated to 65 , and deprotected. The O-carbamoylhydroximo-lactone 7 derived from the glucuronate 67/68 , and the phosphonate analogue 8 were prepared by established methods. The phosphonate 4 is slowly hydrolyzed by the E. coli β-glucuronidase, but neither 4 nor the tetrazole 5 are affected by the bovine liver β-glucuronidase (Table 4). The phenylcarbamate 7 of D -glucarhydroximo-1,5-lactone, but not its phosphonate analogue 8 , is an inhibitor (KI = 8 m?M ) of the E. coli β-glucuronidase. The bovine liver β-glucuronidase is inhibited strongly by 7 (IC50 = 0.2 m?M ) and weakly by 8 (IC50 = 2mM ).  相似文献   

3.
4.
Methyl-2-acetamido-4,6-di-O-acetyl-3-S-acetyl-2-deoxy-3-thio-α-D-mannopy-ranoside has been synthesized by conversion of methyl 2-amino-2-deoxy-4,6-O-benzylidene-α-D-altropyranoside into the corresponding 3-O-methanesulfony1-2-N-[(methylthio)thiocarbonyl]derivative followed by intramolecular displacement of the 3-O-methanesulfonyloxy group with the (methylthio)thiocarbamoyl group.  相似文献   

5.
A concise and efficient synthesis of α,α′,β-trisubstituted β-lactones is presented. These novel lactones are easily obtained in five steps and will be dedicated to anionic ring opening polymerization.  相似文献   

6.
Broad‐spectrum proteasome inhibitors are applied as anticancer drugs, whereas selective blockage of the immunoproteasome represents a promising therapeutic rationale for autoimmune diseases. We here aimed at identifying minimal structural elements that confer β5c or β5i selectivity on proteasome inhibitors. Based on the natural product belactosin C, we synthesized two β‐lactones featuring a dimethoxybenzyl moiety and either a methylpropyl (pseudo‐isoleucin) or an isopropyl (pseudo‐valine) P1 side chain. Although the two compounds differ only by one methyl group, the isoleucine analogue is six times more potent for β5i (IC50=14 nM ) than the valine counterpart. Cell culture experiments demonstrate the cell‐permeability of the compounds and X‐ray crystallography data highlight them as minimal fragments that occupy primed and non‐primed pockets of the active sites of the proteasome. Together, these results qualify β‐lactones as a promising lead‐structure motif for potent nonpeptidic proteasome inhibitors with diverse pharmaceutical applications.  相似文献   

7.
The Ser, Cys, and His side chains play decisive roles in the syntheses, structures, and functions of proteins and enzymes. For our structural and biomedical investigations of β‐peptides consisting of amino acids with proteinogenic side chains, we needed to have reliable preparative access to the title compounds. The two β3‐homoamino acid derivatives were obtained by Arndt–Eistert methodology from Boc‐His(Ts)‐OH and Fmoc‐Cys(PMB)‐OH (Schemes 2–4), with the side‐chain functional groups' reactivities requiring special precautions. The β2‐homoamino acids were prepared with the help of the chiral oxazolidinone auxiliary DIOZ by diastereoselective aldol additions of suitable Ti‐enolates to formaldehyde (generated in situ from trioxane) and subsequent functional‐group manipulations. These include OH→OtBu etherification (for β2hSer; Schemes 5 and 6), OH→STrt replacement (for β2hCys; Scheme 7), and CH2OH→CH2N3→CH2NH2 transformations (for β2hHis; Schemes 9–11). Including protection/deprotection/re‐protection reactions, it takes up to ten steps to obtain the enantiomerically pure target compounds from commercial precursors. Unsuccessful approaches, pitfalls, and optimization procedures are also discussed. The final products and the intermediate compounds are fully characterized by retention times (tR), melting points, optical rotations, HPLC on chiral columns, IR, 1H‐ and 13C‐NMR spectroscopy, mass spectrometry, elemental analyses, and (in some cases) by X‐ray crystal‐structure analysis.  相似文献   

8.
N-Methyl-2-methyl-3-(benzotriazol-l-yl)propanamide, on treatment with butyllithium forms a dianion which on treatment with alkyl and benzyl halides, aldehydes and ketones affords monosubstituted products; with ethyl p-toluate, a lactam is formed. The alkylated derivatives eliminate benzotriazole in the presence of base to afford trisubstituted α,β-unsaturated amides.  相似文献   

9.
10.
Five β‐peptide thioesters ( 1 – 5 , containing 3, 4, 10 residues) were prepared by manual solid‐phase synthesis and purified by reverse‐phase preparative HPLC. A β‐undecapeptide ( 6 ) and an α‐undecapeptide ( 7 ) with N‐terminal β3‐HCys and Cys residues were prepared by manual and machine synthesis, respectively. Coupling of the thioesters with the cysteine derivatives in the presence of PhSH (Scheme and Fig. 1) in aqueous solution occurred smoothly and quantitatively. Pentadeca‐ and heneicosapeptides ( 8 – 10 ) were isolated, after preparative RP‐HPLC purification, in yields of up to 60%. Thus, the so‐called native chemical ligation works well with β‐peptides, producing larger β3‐ and α/β3‐mixed peptides. Compounds 1 – 10 were characterized by high‐resolution mass spectrometry (HR‐MS) and by CD spectroscopy, including temperature and concentration dependence. β‐Peptide 9 with 21 residues shows an intense negative Cotton effect near 210 nm but no zero‐crossing above 190 nm, (Figs. 2–4), which is characteristic of β‐peptidic 314‐helical structures. Comparison of the CD spectra of the mixed α/β‐pentadecapeptide ( 10 ) and a helical α‐peptide (Fig. 5) indicate the presence of an α‐peptidic 3.613 helix.  相似文献   

11.
Tetra-O-benzyl--D-glucopyranosyl bromide in dichloromethane reacts stereospecifically with solutions of phenols in aqueous sodium or potassium hydroxide, in the presence of phase transfer catalysts, to give good yields of tetra-O-benzyl aryl-β-D-glucopyranosides which are converted into the corresponding aryl β-D-glucopyranosiduronic acids by sequential catalytic debenzylation and catalytic oxidation.  相似文献   

12.
Racemic and enantiomerically pure manno‐configured isoquinuclidines were synthesized and tested as glycosidase inhibitors. The racemic key isoquinuclidine intermediate was prepared in high yield by a cycloaddition (tandem Michael addition/aldolisation) of the 3‐hydroxy‐1‐tosyl‐pyridone 10 to methyl acrylate, and transformed to the racemic N‐benzyl manno‐isoquinuclidine 2 and the N‐unsubstituted manno‐isoquinuclidine 3 (twelve steps; ca. 11% from 10 ). Catalysis by quinine of the analogous cycloaddition of 10 to (?)‐8‐phenylmenthyl acrylate provided a single diastereoisomer in high yield, which was transformed to the desired enantiomerically pure D ‐manno‐isoquinuclidines (+)‐ 2 and (+)‐ 3 (twelve steps; 23% from 10 ). The enantiomers (?)‐ 2 and (?)‐ 3 were prepared by using a quinidine‐promoted cycloaddition of 10 to the enantiomeric (+)‐8‐phenylmenthyl acrylate. The N‐benzyl D ‐manno‐isoquinuclidine (+)‐ 2 is a selective and slow inhibitor of snail β‐mannosidase. Its inhibition strength and type depends on the pH (at pH 4.5: Ki=1.0 μM , mixed type, α=1.9; at pH 5.5: Ki=0.63 μM , mixed type, α=17). The N‐unsubstituted D ‐manno‐isoquinuclidine (+)‐ 3 is a poor inhibitor. Its inhibition strength and type also depend on the pH (at pH 4.5: Ki=1.2?103 μM , mixed type, α=1.1; at pH 5.5: Ki=0.25?103 μM , mixed type, α=11). The enantiomeric N‐benzyl L ‐manno‐isoquinuclidine (?)‐ 2 is a good inhibitor of snail β‐mannosidase, albeit noncompetitive (at pH 4.5: Ki=69 μM ). The N‐unsubstituted isoquinuclidine (?)‐ 2 is a poor inhibitor (at pH 4.5: IC50=7.3?103 μM ). A comparison of the inhibition by the pure manno‐isoquinuclidines (+)‐ 2 and (+)‐ 3 , (+)‐ 2 /(?)‐ 2 1 : 1, and (+)‐ 3 /(?)‐ 3 1 : 1 with the published data for racemic 2 and 3 led to a rectification of the published data. The inhibition of snail β‐mannosidase by the isoquinuclidines 2 and 3 suggests that the hydrolysis of β‐D ‐mannopyranosides by snail β‐mannosidase proceeds via a distorted conformer, in agreement with the principle of stereoelectronic control.  相似文献   

13.
β-Keto-β-sulfonylenamines 2a,b reacted with benzamidine or guanidines to give 2,4-disubstituted 5-methanesulfonylpyrimidines 3a-d , whose methanesulfonyl groups were substituted by n-butyllithium or alkylmagnesium bromides to yield 2,4-disubstitued 5-alkylpyrimidines 6a-d. 2-Substituted 4-amino-5-sulfonylpyrimidines 7a,b, 8 and 2-substituted 5-benzenesulfonylpyrimidin-4-ones 9a,b were similarly obtained from β-cyano-β-sulfonylenamines 2c,d and β-ethoxycarbonyl-β-sulfonylenamine ( 2e ), respectively.  相似文献   

14.
The α-glucosidase enzyme, located in the brush border of the small intestine, is responsible for overall glycemic control in the body. It hydrolyses the 1,4-linkage in the carbohydrates to form blood-absorbable monosaccharides that ultimately increase the blood glucose level. α-Glucosidase inhibitors (AGIs) can reduce hydrolytic activity and help to control type 2 diabetes. Aiming to achieve this, a novel series of 1-benzyl-3-((2-substitutedphenyl)amino)-2-oxoethyl)-2-(morpholinomethyl)-1H-benzimidazol-3-ium chloride was synthesized and screened for its α-glucosidase inhibitory potential. Compounds 5d, 5f, 5g, 5h and 5k exhibited better α-glucosidase inhibitions compared to the standard drug (acarbose IC50 = 58.8 ± 0.012 µM) with IC50 values of 15 ± 0.030, 19 ± 0.060, 25 ± 0.106, 21 ± 0.07 and 26 ± 0.035 µM, respectively. Furthermore, the molecular docking studies explored the mechanism of enzyme inhibitions by different 1,2,3-trisubstituted benzimidazolium salts via significant ligand–receptor interactions.  相似文献   

15.
16.
Synthesis of Diastereo- and Enantioselectively Deuterated β,ε-, β,β-, β,γ- and γ,γ-Carotenes We describe the synthesis of (1′R, 6′S)-[16′, 16′, 16′-2H3]-β, εcarotene, (1R, 1′R)-[16, 16, 16, 16′, 16′, 16′-2H6]-β, β-carotene, (1′R, 6′S)-[16′, 16′, 16′-2H3]-γ, γ-carotene and (1R, 1′R, 6S, 6′S)-[16, 16, 16, 16′, 16′, 16′-2H6]-γ, γ-carotene by a multistep degradation of (4R, 5S, 10S)-[18, 18, 18-2H3]-didehydroabietane to optically active deuterated β-, ε- and γ-C11-endgroups and subsequent building up according to schemes \documentclass{article}\pagestyle{empty}\begin{document}${\rm C}_{11} \to {\rm C}_{14}^{C_{\mathop {26}\limits_ \to }} \to {\rm C}_{40} $\end{document} and C11 → C14; C14+C12+C14→C40. NMR.- and chiroptical data allow the identification of the geminal methyl groups in all these compounds. The optical activity of all-(E)-[2H6]-β,β-carotene, which is solely due to the isotopically different substituent not directly attached to the chiral centres, is demonstrated by a significant CD.-effect at low temperature. Therefore, if an enzymatic cyclization of [17, 17, 17, 17′, 17′, 17′-2H6]lycopine can be achieved, the steric course of the cyclization step would be derivable from NMR.- and CD.-spectra with very small samples of the isolated cyclic carotenes. A general scheme for the possible course of the cyclization steps is presented.  相似文献   

17.
以5-雄烯二醇为原料,用微生物转化的方法合成了两个重要的神经甾体5-雄烯-3β, 7α, 17β-三醇和5-雄烯-3β, 7β, 17β-三醇。所用菌种总枝毛霉为我们自己筛选,并首次应用于5-雄烯-3β, 7α, 17β-三醇和5-雄烯-3β, 7β, 17β-三醇的合成中。  相似文献   

18.
A convenient synthesis of α-hydroxy-β-lactams has been devised that involves the annelation of an inline with benzyloxyacetyl chloride and triethylamine and subsequent hydrogenolysis in the presence of palladium on carbon. In most cases a cis-β-lactam was obtained. A thioimidate can also be used as the imino component in the annelation reaction but the hydrogenolysis step fails. The annelation of the appropriate thiazoline to a 6-epi-penicillin derivative occurred much more readily with benzyloxyacetyl chloride than with azidoacetyl chloride.  相似文献   

19.
The racemic 7‐oxanorbornanyl and norbornanyl aminoalcohols 3, 4, 42, 45 , and 46 were synthesized and tested as snail β‐mannosidase inhibitors. The amino tetraol 3 was obtained from the known sulfonyl acrylate 9 and furan 10 . Esterification provided 11 that underwent an intramolecular Diels–Alder reaction to the 7‐oxanorbornene 12 . Reduction of 12 to 13 , desulfonylation, isopropylidenation, and cis‐dihydroxylation gave 16 . A second isopropylidenation to 17 , followed by debenzylation and a Mitsunobu–Gabriel reaction provided 19 that was deprotected via 20 to 3 . Diels–Alder cycloaddition of furfuryl acetate and maleic anhydride to 21 , followed by alcoholysis of the anhydride, cis‐dihydroxylation, isopropylidenation, and Barton decarboxylation gave the ester 25 . Deacetylation to 26 and a Mitsunobu–Gabriel reaction led to 27 that was transformed into the N‐Boc analogue 29 , reduced to the alcohol 30 , and deprotected to 4 . The 1‐aminonorbornane 5 was obtained from Thiele's Acid 31 . Diels–Alder cycloaddition of the cyclopentadiene obtained by thermolysis of the diester 32 , methanolysis of the resulting anhydride 33 , dihydroxylation, isopropylidenation, Barton decarboxylation, and Curtius degradation led to the benzyl carbamate 39 that was reduced to the alcohol 40 , transformed into the N‐Boc carbamate 41 , and deprotected to 5 . The alcohol 40 was also transformed into the benzylamine 42 , aniline 45 , and hydroxylamine 46 . Snail β‐mannosidase was hardly inhibited by 3, 4, 42, 45 , and 46 . Only the amino triol 5 proved a stronger inhibitor. The inhibition by 5 depends on the pH value (at pH 3.5: Ki = 1900 μM ; at pH 4.5: Ki = 340 μm; at pH 5.5: Ki = 110 μm). The results illustrate the strong dependence of the inhibition by bicyclic mimics upon the precise geometry and orientation of the amino group as determined by the scaffold. It is in keeping with the hypothesis that the reactive conformation imposed by snail β‐mannosidase is close to a 1,4B/1S3.  相似文献   

20.
γγγ-Trifluorocarbonyl compounds are easily obtained in a good yield by introduction of the 1,1,1-trifluoroethyl moiety (CF3-CH2-) on the -methylene group of a ketone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号