首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polystyrene/polystyrene latex interpenetrating polymer networks (IPNs) were prepared by seeded emulsion polymerization of styrene–divinylbenzene mixtures in crosslinked monodisperse polystyrene particles. The resulting latexes comprised uniform nonspherical particles, e.g., ellipsodal and egg-like singlets, symmetry and asymmetric doublets, and ice cream cone-like and popcorn-like multiplets. The nonspherical particles, which were formed by separation of the second-stage monomer from the crosslinked seed network during swelling and polymerization, are excellent models for studying phase separation in IPN's. The degree of phase separation increased with increasing degree of crosslinking of the seed particles, monomer/polymer swelling ratio, polymerization temperature, and seed particle size, and with decreasing divinylbenzene concentration in the swelling monomer. The results were consistent with a thermodynamic analysis based on the elastic-retractile force of the polymer network, the monomer/polymer mixing force, and interfacial tension force.  相似文献   

2.
We describe a promising and flexible technique for fabricating uniform nonspherical particles with anisotropic phase and surface properties. Our approach is based on the seeded polymerization technique in which monomer-swollen particles are polymerized. The polymerization causes a phase separation to occur, giving rise to two-phase nonspherical particles. We show that the elastic contraction of the swollen polymer particles induced by elevated polymerization temperatures plays an important role in the phase separation. Moreover, chemical anisotropy of nonspherical particles can be obtained by using immiscible polymer pairs and by employing surface treatments. Furthermore, we are able to produce amphiphilic dumbbell particles consisting of two different bulbs: hydrophilic poly (ethylene imine)-coated polystyrene and hydrophobic polystyrene. Controlled geometries of these amphiphilic nonspherical particles will allow a wide range of potential applications, such as engineered colloid surfactants.  相似文献   

3.
A flexible poly(dimethyl siloxane) diacrylate (PDMSDA) crosslinker was synthesized using different molecular weights of poly(dimethyl siloxane) (PDMS, M n =550, 1,700, 4,000 g/mol). The monodisperse polystyrene (PS) particles crosslinked with various contents of PDMSDA were prepared by dispersion polymerization, and applied as seed particles in the seeded polymerization. The crosslinking density of the PS particles was determined from the rate of transport of the monomer molecules to the crosslinked seed particles. It was confirmed that the monomer swelling capacity of seed particles and final morphological changes of polymer beads were determined significantly by the crosslinking density of the seed particles. In addition, the morphological change was not observed without the oligomer swelling step in the seeded polymerization due to the hydrophobic property of PDMS. When highly crosslinked seed particles were used in the seeded polymerization, peculiar morphology (doublet structure) of polymer beads appeared.  相似文献   

4.
In this work, the preparation of micron-sized polymer particles with nonspherical shapes via seeded dispersion polymerization of 2-ethylhexyl methacrylate with polystyrene seed particles in the presence of hydrocarbon droplets and evaporation of hydrocarbon after the polymerization under various polymerization conditions was discussed. The effect of second monomer and initiator type, mixing method, and stabilizer content on the shape of the obtained particles was investigated. It was observed that particles with more nonspherical shapes were obtained with increasing the alkyl chain length of ester group of the methacrylate of the second monomer which is because of increasing the absorption amounts of hydrocarbon by second polymer domains. Moreover, the experimental results showed that shape of the particles which was produced by shaking is more nonspherical than the shape of the particles which was obtained from tumbling. Furthermore, particles with different nonspherical shapes were prepared by changing the initiator type and stabilizer content.  相似文献   

5.
石山 《高分子科学》2011,29(5):634-638
Micron-sized nonspherical polymer particles having different morphologies were synthesized by seeded soap-free emulsion polymerization of styrene(St) and ethyleneglycol dimethacrylate(EGDMA,used as a crosslinker) on spherical, linear polystyrene(PS) seed particles.The morphology of the resulting PS/poly(St-co-EGDMA) particles was dependent on the crosslinker concentration and polymerization temperature.  相似文献   

6.
In this study, the preparation of micron-sized polymer particles having a novel and unique nonspherical shape which we called almond-shell-like by dual-seeded dispersion polymerization (DSDP) of 2-ethylhexyl methacrylate (EHMA) with polystyrene (PS) and poly(methyl methacrylate) (PMMA) seed particles in the presence of decane droplets and evaporation of decane after the polymerization was discussed. The experimental results showed that mushroom-like morphology which is a precursor of the almond-shell-like shape was obtained from DSDP of EHMA. It was found that with changing the PS/PMMA seed particles' weight ratio, the size of the dents on the surface of the particles can be controlled. Furthermore, it was observed that various nonspherical particles can be produced using different methacrylic seed particles and initiators.  相似文献   

7.
Polystyrene (PS) (1)/Poly(n-butyl acrylate (BA)-methacrylic acid (MAA)) (2) structured particle latexes were prepared by emulsion polymerization using monodisperse polystyrene latex seed (118 nm) and different BA/MAA ratios. Three main aspects have been investigated: i) the polymerization kinetics; ii) the particle morphology as a function of reaction time; iii) the distribution of MAA units between the water phase and the polymer particles.The amount of MAA in the shell copolymer was found to be the main factor controlling the particle shape and morphology. The shape of the structured particles was, generally, non-spherical, and the shape irregularities increased as a particles was, generally, non-spherical, and the shape irregularities increased as a function of reaction time. At the beginning of the second stage reaction, new small particles were observed, which coalesced onto the PS seed as the polymerization proceeded. The distribution of the MAA groups in the latex particles and the serum was analyzed by alkali/back-acid titration, using ionic exchanged latexes. No MAA groups were detected in the latex serum. Due to the lowTg of the BA-MAA copolymers, alkali conductimetric titrations accounted for all the MAA groups on and within the polymer particles. Therefore, for these systems, this method is not only limited to a thin surface layer, as it is often assumed.  相似文献   

8.
Micron-sized, monodisperse composite polymer particles having "disc-like" and "polyhedral" shapes were prepared by seeded dispersion polymerization of 2-ethylhexylmethacrylate (EHMA) with 2.67-mum-sized polystyrene (PS) seed particles in methanol/water media in the presence of droplets of various saturated hydrocarbons and evaporation of the hydrocarbon after the polymerization. Such nonspherical shapes were based on the volume reduction due to the evaporation. The primary factors influencing the particle shape seemed to be the absorption rate of the hydrocarbon into the resulting PS/poly(EHMA)/hydrocarbon composite particles during the polymerization, which affected the viscosities and the volumes of the PS and poly(EHMA) phases. It was found that the morphological development during the polymerization was retarded at "hamburger-like" morphology, which is a precursor of the disc-like particle, although this morphology is a thermodynamically metastable state.  相似文献   

9.
Monodisperse porous styrene-divinylbenzene copolymer particles were prepared via seeded emulsion polymerization using a mixture of linear polymer (polystyrene seed) and non-solvent as inert diluent. Experimental evidence was presented to describe the mechanism of formation of porous polymer particles during the copolymerization and solvent extraction stages, in which porosity was a consequence of phase separation in the presence of diluents. Pore structure formation was investigated by changes in copolymerization kinetics, gel content, crosslinking density, particle morphology, surface area, pore volume, and pore size distribution. The process of copolymerization was presented, based on the concepts of production, agglomeration, and fixation of the interior gel microspheres of polymer particles. A portion of linear polymer used as diluent was found to participate in the network structure while the porous matrix was built-up. The influence of the removal of the linear polymer from the matrix pores during the solvent extraction process on the porous structure was also discussed.  相似文献   

10.
Anisotropic polystyrene nanoparticles of diameters below 0.5 microm were prepared by coating the surface of cross-linked polystyrene latex particles with a thin hydrophilic polymer layer prior to swelling the particles with styrene and then initiating second-stage free-radical polymerization. Conditions were found so that all particles had uniform asymmetry. The effect of surface chemistry on the development of particle anisotropy during seeded emulsion polymerization of sub-0.5 microm diameter particles was studied. The extent and uniformity of the anisotropy of the final particles depended strongly on the presence of the hydrophilic surface coating. Systematic variation of the degree of hydrophilicity of the surface coating provided qualitative insight into the mechanism responsible for anisotropy. Conditions were chosen so that the surface free energy favored the extrusion of a hydrophobic bulge of monomer on the hydrophilic surface of the particle during the swelling phase: the presence of a hydrophilic layer on the particle surface causes this asymmetry to be favored above uniform wetting of the particle surface by the monomer. Kinetic effects, arising from the finite time required for the seed to swell with the monomer, also play a role.  相似文献   

11.
Uniformly sized porous polymer particles with different polarity namely poly(divinylbenzene), poly(vinyl acetate‐co‐divinylbenzene), poly(ethylene dimethacrylate), and poly (glycidyl methacrylate‐co‐ethylene dimethacrylate) were prepared in the micron‐size range by a seeded polymerization method. Parameters affecting the particle morphologies including monomer mixture content, porogen content, and polystyrene (PS) seed latexes were varied, and the morphologies of the resulting particles were investigated by scanning electron and confocal microscopy. The results obtained indicated that the particle shape depended dominantly on the molecular weight of the PS seed template. Deformed particles, including collapsed spheres and spheres with holes were obtained when high molecular weight PS seeds were used, whereas well‐defined polymer particles were produced easily by using low molecular weight seeds. The use of 1,1‐diphenylethylene as a chain terminator during seed polymerization is proposed in this work as an efficient method to lower molecular weight of PS in seed particles while keeping seed size small. This low molecular weight seed template retained its spherical geometry after swelling and polymerization with different second stage monomers. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

12.
Polystyrene template microspheres of 1.4 ± 0.1 μm were prepared by dispersion polymerization of styrene in a mixture of ethanol and 2‐methoxy ethanol. These template particles were then swelled at room temperature in a single step with emulsion that was prepared in sodium dodecyl sulfate aqueous solution from a swelling solvent (dibutyl phthalate) containing the initiator (benzoyl peroxide) and monomer(s) (chlormethylstyrene, divinylbenzene, or ethylene dimethacrylate). Composite uniform particles composed of the template polystyrene and noncrosslinked or crosslinked polychloromethylstyrene were prepared by polymerizing the monomer(s) within the swelled particles at 73 °C. Crosslinked uniform polychloromethylstyrene particles of higher surface area were formed by dissolving the template polystyrene polymer of the composite particles. The influence of various reaction parameters, such as dibuthyl phthalate concentration, chloromethylstyrene concentration, crosslinker type and concentration, and so forth on the molecular weight, size, size distribution, shape, morphology, surface area, and decomposition temperature of the particles was investigated. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1342–1352, 2002  相似文献   

13.
It has been found that when hydrophobic monomers are polymerized in the presence of highly hydrophilic polymer seed particles, the second-stage hydrophobic polymers form cores surrounded by the first-stage hydrophilic polymers, resulting in “inverted” core-shell latexes. The formation of core-shell morphology by this inversion process has been found to be dependent on the hydrophilicity and molecular weight of the first-stage hydrophilic polymers and the extent of phase separation between the two polymers involved. Particle morphology has been examined by electron microscopy, surface acid titration, alkali swelling of particles, and surface reactivity.  相似文献   

14.
Submicron-sized peanut-shaped poly(methyl methacrylate)/polystyrene(PMMA/PS) particles were successfully synthesized by seeded soap-free emulsion polymerization of styrene on the spherical crosslinked PMMA seed particles.The obtained peanut-shaped particles showed a novel internal morphology:PS phase formed one domain which linked to the other domain having PMMA core encased by PS shell.  相似文献   

15.
In this study, thermotropic liquid-crystal/polymer microcapsules were produced via in situ suspension polymerization. The phase separation between cholesteryl liquid crystal (CLC) and poly(methyl methacrylate) (PMMA) in the droplets was induced by polymerization, resulting consequently in uniform liquid-crystal-containing polymer microcapsules. The phase behavior of the microcapsules was dependent on the loading amount of the liquid crystals and the degree of cross-linking of the polymer phase. Above 30% loading amount of CLC, the liquid crystals started to appear clearly. It was found that the spherical morphology of the microcapsules was achieved within a slight degree of cross-linking of the PMMA phase. At a high degree of cross-linking, nonspherical particles with a rough surface and deeper dents were obtained, which was due to the elastic-retractive force of the cross-linked network. The liquid-crystal/polymer microcapsules produced in this study could find great applicability in pharmaceutics and electronics as a smart drug carrier.  相似文献   

16.
The preparation and characterization of polymer blends with structured natural rubber (NR)-based latex particles are presented. By a semicontinuous emulsion polymerization process, a natural rubber latex (prevulcanized or not) was coated with a shell of crosslinked polymethylmethacrylate (PMMA) or polystyrene (PS). Furthermore, core–shell latexes based on a natural rubber/crosslinked PS latex semi-interpenetrating network were synthesized in a batch process. These structured particles were incorporated as impact modifiers into a brittle polymer matrix using a Werner & Pfleiderer twin screw extruder. The mechanical properties of PS and PMMA blends with a series of the prepared latexes were investigated. In the case of PMMA blends, relatively simple core (NR)–shell (crosslinked PMMA) particles improved the mechanical properties of PMMA most effectively. An intermediate PS layer between the core and the shell or a natural rubber core with PS subinclusions allowed the E-modulus to be adjusted. The situation was different with the PS blends. Only core–shell particles based on NR-crosslinked PS latex semi-interpenetrating networks could effectively toughen PS. It appears that microdomains in the rubber phase allowed a modification of the crazing behavior. These inclusions were observed inside the NR particles by transmission electron microscopy. Transmission electron photomicrographs of PS and PMMA blends also revealed intact and well-dispersed particles. Scanning electron microscopy of fracture surfaces allowed us to distinguish PS blends reinforced with latex semi-interpenetrating network-based particles from blends with all other types of particles.  相似文献   

17.
Macroporous poly(styrene-co-divinylbenzene) particles were produced in a micron-size range by two-stage swelling and continuous polymerization. The molecular weight of the polystyrene seed particles was controlled by incorporating a urethane acrylate. It was found that the porosity of the particles produced by the seeded polymerization was dependent on the molecular weight of the seed polymer. As the molecular weight of the polystyrene seed increased, the porous particles produced became macroporous. Interestingly, the high molecular weight of the polystyrene seed had a negligible influence on the change of porosity of the seeded polymerized particles. It is believed that the viscosity of the swollen droplet phase remained pretty high with the change in composition because the polystyrene seed copolymerized with urethane cacrylate had many side chains. Received: 16 December 1999 Accepted: 9 August 2000  相似文献   

18.
Monodisperse crosslinked polystyrene (PS) and polymethacrylate (PMA) beads of sizes greater than 1 μm in diameter are prepared by particle nucleation onto pre-existing polymer seeds in a multistage emulsion polymerization, in the absence of emulsifier. An adequate seed number concentration, which decreases with increasing seed size, is necessary to achieve monodisperse beads. Monodisperse multicomposition beads are prepared by polymerizing styrene onto PMA seeds, but not by polymerizing methyl methacrylate onto PS seeds. Phase separation in growing seed particles or surface polymerization following free radical capture may lead to the formation of asymmetric shaped particles.  相似文献   

19.
A series of poly(2-acetoxyethyl methacrylate)/polystyrene(PAEMA/PS) latex interpenetrating polymer networks(LIPNs) were prepared by seeded soap-free emulsion polymerization of styrene on the crosslinked PAEMA seed particles using an oil-soluble initiator.These PAEMA/PS LIPNs showed a well-defined phase-separated structure with PS phase dispersing in continuous PAEMA phase.The domain size of PS phase was found to depend on the crosslinking degree of PAEMA seed particles and the amount of second-stage styrene monomer.  相似文献   

20.
The synthesis of functionalized submicrometer magnetic latex particles is described as obtained from a preformed magnetic emulsion composed of organic ferrofluid droplets dispersed in water. Composite (polystyrene/γ‐Fe2O3) particles were prepared according to a two‐step procedure including the swelling of ferrofluid droplets with styrene and a crosslinking agent (divinyl benzene) followed by seeded emulsion polymerization with either an oil‐soluble [2,2′‐azobis(2‐isobutyronitrile)] or water‐soluble (potassium persulfate) initiator. Depending on the polymerization conditions, various particle morphologies were obtained, ranging from asymmetric structures, for which the polymer phase was separated from the inorganic magnetic phase, to regular core–shell morphologies showing a homogeneous encapsulation of the magnetic pigment by a crosslinked polymeric shell. The magnetic latexes were extensively characterized to determine their colloidal and magnetic properties. The desired core–shell structure was efficiently achieved with a given styrene/divinyl benzene ratio, potassium persulfate as the initiator, and an amphiphilic functional copolymer as the ferrofluid droplet stabilizer. Under these conditions, ferrofluid droplets were successfully turned into superparamagnetic polystyrene latex particles, about 200 nm in size, containing a large amount of iron oxide (60 wt %) and bearing carboxylic surface charges. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2642–2656, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号