首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two new cobalt(III)-chelates, trans-bis(methyl-ethyl-dioximato)-chloro-β-picoline-cobalt (III) (1), and trans-bis(methyl-ethyl-dioximato)-chloro-3,4-lutidine-cobalt (III) (2) were obtained by oxidizing a mixture of CoCl2, methyl-ethyl-dioxime and amines: β-picoline (3-methyl-pyridine) for (1) and 3,4-lutidine (3,4-dimethyl-pyridine) for (2). The crystal structure of (1) was determined by single crystal XRD (monoclinic, space group P21/c (No. 14) with a = 8.391(3) Å, b = 14.421(5) Å, c = 18.383(8) Å, β = 114.57(2)°, R = 0.0499), while both (1) and (2) were studied by middle and far FTIR spectroscopy, electrospray ionization (ESI) MS, powder XRD and thermal analysis (TG/DTA-MS). Melting of the related complexes 1 and 2 at 219 and 184 °C, respectively, results in an immediate chemical degradation of their whole structure and tarring of ligands.  相似文献   

2.
[Li(12-Crown-4){(Me3Si)2N}2TiCH2SiMe2NSiMe3] – an Ion-Pair with a Linear Li–C–Ti-Axis The title compound ( 1 ) has been prepared from Ti[N(SiMe3)2]3 and n-butyllithium in OEt2/n-hexane in the presence of 12-crown-4. Smaragd-green single crystals of 1 · C7H8 which were suitable for X-ray crystallography were formed from toluene solutions at –18 °C. According to the crystal structure determination 1 forms ion pairs between the lithium atom and the CH2-carbon atom which is member of a planar Ti–C–Si–N heterocycle. The coordination geometry of the Li–C–Ti axis is linear (bond angle 172.8° in average of the two symmetry independent species) with coordination number five at the CH2-carbon atom.  相似文献   

3.
On X-Ray Single Crystal Studies of Na2FeAlF7, Na2MIIGaF7 (MII = Ni, Zn), and Na2ZnFeF7 and the Structural Chemistry of Weberites At single crystals of the orthorhombic weberite Na2NiGaF7 (a = 716.1, b = 1021.6, c = 740.9 pm; Imma, Z = 4) and of the monoclinic variants (C2/c, Z = 16) Na2FeAlF7 (a = 1242.6, b = 727.8, c = 2420.6 pm, β = 99.99°), Na2ZnGaF7 (a = 1251.9, b = 730.3, c = 2435.3 pm, β = 99.74°) and Na2ZnFeF7 (a = 1261.0, b = 7.359, c = 2453.8 pm, β = 99.70°) complete X-ray structure determinations were performed. The results and the influence of radii on the bridge angles MII–F–MII and MII–F–MIII are discussed in connection with general features within the structural chemistry of 28 weberites.  相似文献   

4.
Reaction of Rhenium(VII) Oxide with 1,4-Dioxane – Crystal Structure of Re2O7(OH2)2 · 2(1,4-Dioxane) By solvolysis of polymeric Re2O7 with 1,4-dioxane in the presence of small amounts of H2O two products of compositions Re2O6(OH)2 · 3(1,4-dioxane) ( 1 ) and Re2O7 · 2H2O · 2(1,4-dioxane) ( 2 ) are formed. From a complete X-ray single-crystal structure analysis 2 could now be characterized structurally (monoclinic, space group P21/c, a = 6.828(3) Å, b = 9.530(2) Å, c = 26.421(8) Å, β = 91.71(3)°, Z = 4). The compound is important as a convenient precursor for the preparation of pure rhenium trioxide. It is to be formulated as Re2O7(OH2)2 · 2(1,4-dioxane) and contains, contrary to 1 , no 1,4-dioxane coordinated to Re. The crystalline phase consists of a supramolecular arrangement of Re2O7(OH2)2 units as in “solid perrhenic acid” and of 1,4-dioxane molecules associated through O? H …? O hydrogen bridges. Analogous to dirhenium heptoxide and to solid perrhenic acid one of the rhenium atoms is in tetrahedral, the other is in distorted octahedral coordination.  相似文献   

5.
Synthesis and Crystal Structure of Ba2ScCl7, a Barium Chloride Hexachloroscandate(III), Ba2Cl[ScCl6] Colourless single crystals of Ba2ScCl7 are obtained from a 1 : 1 molar mixture of BaCl2 and ScCl3. It crystallizes with the non-centrosymmetric monoclinic space group P21 with a = 688,88(7), b = 1349,4(1), c = 1207,4(1), β = 94,93(1)° in a new structure that contains isolated [ScCl6] octahedra and one ‘‘lonesome”︁”︁ chloride ligand according to Ba2Cl[ScCl6].  相似文献   

6.
Sm2As4O9: An Unusual Samarium(III) Oxoarsenate(III) According to Sm4[As2O5]2[As4O8] Pale yellow single crystals of the new samarium(III) oxoarsenate(III) with the composition Sm4As8O18 were obtained by a typical solid‐state reaction between Sm2O3 and As2O3 using CsCl and SmCl3 as fluxing agents. The compound crystallizes in the triclinic crystal system with the space group (No. 2, Z = 2; a = 681.12(5), b = 757.59(6), c = 953.97(8) pm, α = 96.623(7), β = 103.751(7), γ = 104.400(7)°). The crystal structure of samarium(III) oxoarsenate(III) with the formula type Sm4[As2O5]2[As4O8] (≡ 2 × Sm2As4O9) contains two crystallographically different Sm3+ cations, where (Sm1)3+ is coordinated by eight, but (Sm2)3+ by nine oxygen atoms. Two different discrete oxoarsenate(III) anions are present in the crystal structure, namely [As2O5]4? and [As4O8]4?. The [As2O5]4? anion is built up of two Ψ1‐tetrahedra [AsO3]3? with a common corner, whereas the [As4O8]4? anion consists of four Ψ1‐tetrahedra with ring‐shaped vertex‐connected [AsO3]3? pyramids. Thus at all four crystallographically different As3+ cations stereochemically active non‐binding electron pairs (“lone pairs”) are observed. These “lone pairs” direct towards the center of empty channels running parallel to [010] in the overall structure, where these “empty channels” being formed by the linkage of layers with the ecliptically conformed [As2O5]4? anions and the stair‐like shaped [As4O8]4? rings via common oxygen atoms (O1 – O6, O8 and O9). The oxygen‐atom type O7, however, belongs only to the cyclo‐[As4O8]4? unit as one of the two different corner‐sharing oxygen atoms.  相似文献   

7.

A direct synthetic method of mixing Bi(NO3)3 and NaI with 1,10-phenanthroline yielded red crystals of [Bi2(phen)4(NO3)4.4I0.6]I3. In this complex the cationic part is in fact binuclear and contains two [Bi(phen)(NO3)1.7I0.3] groups linked via a bridging NO? 3 anion. The I? 3 anion was not coordinated to bismuth(III) and the lone pair of valence electrons of the bismuth(III) ions appears to be stereochemically inactive. There are two independent NO? 3 anions, one coordinated to bismuth but another shares a position with I? anion. The final results of crystallography show that 40% of these positions are occupied by NO? 3 anions and 60% by I? anions that are coordinated to bismuth atom in bidentate fashion (NO? 3) and in unidentate fashion (I?). An interesting point is that the I? 3 anion was produced by direct synthetic method (Branched tube method). There is a π-π stacking interaction between the parallel aromatic rings around the Bi(III) ion.  相似文献   

8.
Pr(CH3COO)3, an Anhydrous Rare-Earth Acetate with a Network Structure Pr(CH3COO)3 may be prepared by dehydration of Pr(CH3COO)3 · 1,5 H2O at 180°C as an amorphous green powder. Single crystals were grown from the powder by addition of (NH4)CH3COO as ?mineralisator”? at 180°C in a sealed glass ampoule. The crystal structure (tetragonal, P4 21c (no. 114), Z = 24, a = 2106.5(3), c = 1323.6(1) pm, Vm = 147.39(3) cm3/mol, R = 0.055, Rw = 0.029) was determined from four-circle-diffractometer data. The Pr3+ ions occupy three crystallographically independent positions and are surrounded by 9 and 10 oxygen atoms, respectively. Acetate ions connect the cations to a complicated three-dimensional network.  相似文献   

9.

The combination of iminodiacetic acid (H2ida) with cobalt(II) chloride hexahydrate in the presence of sodium hydroxide, followed by heating, produces the trans-facial isomer of K[Co(ida)2]·2H2O. This compound contains extensive intermolecular and intramolecular coordination and hydrogen bonding involving the potassium ions, and results in a complex three-dimensional structure in which each potassium ion is immediately surrounded by six cobalt centers.  相似文献   

10.
Neutral Thiolates and a Iodothiolate of Antimony(III). Crystal Structures of Sb(SC6H5)3, Sb(SC6H2Me3-2,4,6)3, and SbI(SC6H2Me3-2,4,6)2 The crystal structures of Sb(SC6H5)3 ( 1 ), Sb(SC6 · H2Me3-2,4,6)3 ( 2 ), and the novel compound SbI(SC6H2Me3-2,4,6)2 ( 3 ) have been determined by X-ray crystallography. In addition to the expected trigonal pyramidal coordination of antimony intermolecular interactions are observed for 1 (Sb … O: 363.3 pm) and 3 (Sb … S: 2 × 369.4 pm) but not for 2 . The reasons for these differences are discussed.  相似文献   

11.
Synthesis, Crystal Structures, and Vibrational Spectra of [OsBr(acac)(PPh3)] and [OsBr(acac)(AsPh3)] By reaction of tetrabromoacetylacetonatoosmate(IV) with PPh3 or AsPh3 in ethanol the complexes [OsBr(acac)(PPh3)] ( 1 ) and [OsBr(acac)(AsPh3)] ( 2 ) are formed, which are purified by chromatography on silica gel. X-ray structure determinations of single crystals of ( 1 ) (monoclinic, space group P 21/n, a = 13.035(2), b = 18.2640(14), c = 16.636(3) Å, β = 112.776(14)°, Z = 4) and ( 2 ) (monoclinic, space group P 21/c, a = 13.23(5), b = 18.35(2), c = 16.65(2) Å, β = 112.9(5)°, Z = 4) result in mean bond distances Os–P = 2.413, Os–As = 2.483, Os–Br = 2.488 and Os–O = 2.037 Å. The vibrational spectra (10 K) exhibit the inner ligand vibrations of the acac, PPh3 and AsPh3 groups with nearly constant frequencies and the stretching vibrations of OsP at 499–522, of OsAs at 330–339, of OsBr at 213–214 and of OsO in the range 460–694 cm–1.  相似文献   

12.
AlIII Phthalocyanines: Synthesis, Properties, and Crystal Structure of Tetra(n-butyl)-ammonium-trans-di(nitrito(O))phthalocyaninato(2?)aluminate(III) [Al(Cl)Pc2?] reacts with excess (nBu4N)NO2 in dimethylformamide yielding less soluble blue tetra(n-butyl)ammonium-trans-di(nitrito(O))phthalocyaninato(2?)aluminate(III), (nBu4N)trans[Al(ONO)2Pc2?], which crystallizes in the monoclinic space group C2/c (No. 15) with Z = 4. The Al atom is in the special position 4 d in the center of the Pc2? ligand and the two nitrit ions are monodentate O-coordinated in a mutually trans arrangement to the Al atom. The Al? O and average Al? Niso bond distances are 1.927(2) and 1.956 Å, respectively. The geometric data of the coordinated nitrite ion are: d(N? O) = 1.277(4) Å; d(N? O) = 1.221(4) Å; ?(O? N? O) = 114.3(3)°; ?(Al? O? N) = 121.3(2)°. The non-bonded O atoms are trans to the Al atom. The Pc2? ligand is slightly ruffled. The UV-VIS-NIR spectra and the vibrational spectra are discussed.  相似文献   

13.
Mono- and Dinuclear Fluoro Complexes of Titanium (III), Chromium (III), and Iron(III). Syntheses and Structures of (NMe4) (Ti(H2O)4F2)TiF6 · H2O, (NMe4)3Cr2F9, and (NMe4)3Fe2F9 The title compounds have been prepared by reaction of MCl3 (M = Ti, Cr, Fe) with NMe4F in dimethylformamide. (NMe4)3Cr2F9 and (NMe4)3Fe2F9 contain the face-sharing biocathedral M2F93? unit. The M…M distances are 277.1(1) and 289.8(3) pm in (NMe4)3Cr2F9 and (NMe4)Fe2F9, respectively. (NMe4)(Ti(H2O)4F2)TiF6 · H2O contains trans-TiIII(H2O)4F2+ cations and TiIVF62? anions. Crystal data: (NMe4)3Cr2F9: hexagonal, space group P63/m, a = 804.1(3), c = 1857.5(4) pm, Z = 2, 529 reflections, R = 0.049; (NMe4)3Fe2F9: hexagonal, space group P63/m, a = 804.7(5), c = 1 861.6(5) pm, Z = 2, 635 reflections, R = 0,046; (NMe4)(Ti(H2O)4F2)TiF6 · H2O: orthorhombic, space group Pbca, a = 776.9(2), b = 1 616.3(3), c = 2 428.6(7) pm, Z = 8, 2 784 reflections, R = 0,056.  相似文献   

14.
Cs2(H3O)Pr(CH3COO)6 and Cs2Pr(CH3COO)5: Synthesis, Crystal Structures and Thermolysis. Analogous Acetates with Lanthanum through Terbium Single crystals of Cs2(H3O)Pr(CH3COO)6 are obtained as green plates from an acetic acid solution (≈50%) of Cs2CO3 and Pr(CH3COO)3 · 1,5 H2O. The crystal structure monoclinic, Cm, Z = 2, a = 1 540.4(4), b = 691.3(2), c = 1 221.5(4) pm, β = 104.60(5)°, Vm = 379.1(2) cm3/mol, R = 0.040, Rw = 0.035 was determined from four-circle-diffractometer data. The structure consists of monomeric Pr(CH3COO)3 units, in which Pr3+ is surrounded by nine oxygen atoms. These monomers are linked together to infinite layers parallel (001) by common acetate oxygen atoms with two ?molecules”? of Cs(CH3COO). Together with an additional acetate ion coordinated to one of the Cs+ ions the composition of the layers is [Cs2Pr(CH3COO)6]?. Between these layers H3O+ is located for electroneutrality. Thermal decomposition of Cs2(H3O)Pr(CH3COO)6 was examined with thermoanalytical methods (TG/DTA with coupled gas analysis), Guinier-Simon technique and IR spectroscopy: beginning at 70°C the compound looses water and acetic acid. It decomposes topotactically to Cs2Pr(CH3COO)5. At 270°C this acetate decomposes to Cs2CO3 and Pr2O2CO3 which emits CO2 at 600°C form ing Pr2O3or PrO2?x Single crystals of Cs2Pr(CH3COO)5 were obtained from Pr(CH3COO)3, in molten Cs(CH3COO) at about 200°C. The crystal structure tetragonal, P43, Z = 4, a = 1 174,5(2), c = 1 480,5(3) pm, Vm = pin,307,5(1) cm3/mol, R = 0,061, Rw= 0,031 again consists of Pr(CH3COO)3, monomers where Pr3+ has 9 oxygen ligands in its first coordination sphere. They are linked together by two ”molecules“ of cesium acetate to infinite chains along [00l] around the 4, screw axis. There are also acetate bridges between these chains. Isotypic compounds Cs2(H3O)M(CH3COO)6 and Cs2M(CH3COO)5, and Cs2M(CH3COO)5with M = La? Tb, were obtained from acetic acid solutions or thermal decomposition and were characterized by X-ray Guinier techniques.  相似文献   

15.

The complex [Cu(tn)2]2[Co(CN)6](ClO4)·2H2O (tn = trimethylenediamine) has been prepared and characterized by elemental analysis, IR, electronic and electronic spin resonance spectra and magnetic properties. The x-ray structure analysis shows that each [Co(CN)6]3? ion coordinates to four [Cu(tn)2]2+ cations through four cyano nitrogen atoms in the same plane, providing a two-dimensional square network structure, formed from Co-CN-Cu(tn)2-NC-Co linkages.  相似文献   

16.
Polyol Metal Complexes. 17. Crystalline Iron(III) Complexes with Twofold Deprotonated Anhydroerythritol Ligands Three new crystalline ferrates(III) with diolato ligands derived from anhydroerythritol by deprotonation have been synthesized from wet alcoholic and from aqueous solution. Almost colourless, monoclinic crystals of Na2[Fe(AnEryt-H-2)2(OH)] · 0.5 NaNO3 · 3.5 H2O ( 1 ) have been prepared from ethanolic solutions. They content mononuclear bis diolato hydroxo ferrate(III) dianions. Trinuclear hexakis diolato μ3-methoxo triferrat(III) tetraanions constitute the anionic part of Na4[Fe3(AnErytH-2)6(OMe)] · 2.5 NaNO3 ( 2 ), yellow-green hexagonal crystals of which are formed from wet methanolic solutions. Yellow-green triclinic crystals of Ba2[Fe2(AnEryt-H-2)4(μ-OH)2] · 12 H2O ( 3 ) have been precipitated from aqueous solutions. In 3 , the anions of 1 are dimerized to give tetrakis diolato di-μ-hydroxo diferrat(III) tetraanions.  相似文献   

17.
Ternary Acetates of the Lanthanides with Cesium: Dimers in CsLu(CH3COO)4 and Trimers in Cs2[Lu3(CH3COO)10(OH)(H2O)]. Synthesis, Crystal Structures, Thermolysis Single crystals of CsLu(CH3COO)4 and Cs2[Lu3(CH3COO)10(OH)(H2O)] were obtained from an aqueous solution of lutetium and cesium acetate in a 1:1 molar ratio. The crystal structures (CsLu(CH3COO)4: monoclinic, P21/n (no. 14), Z = 8, a = 1 293.1(2), b = 1 323.8(2), c = 1 622.5(3) pm, β = 92.01(2)°, Vm = 208.97(6) cm3/mol, R = 0.056, Rw = 0.034; Cs2[Lu3(CH3COO)10(OH)(H2O)]: monoclinic, C2/c (no.15), Z = 4, a = 2 138.5(6), b = 1 378.0(3), C = 1 482.9(4) pm, β = 106.15(2)°, Vm = 632.0(3) cm3/mol, R = 0.049, Rw = 0.036) were determined from four-circle-diffractometer data. The structures consist of dimers and trimers, respectively, that are built by bridging acetate groups. These units are fragments of the infinite chains of the Ho(CH3COO)3 type of structure. The isotypic compounds CsM(CH3COO)4 with M=Eu? Lu were synthesized and characterized by the X-ray Guinier technique. The thermal decomposition of CsLu(CH3COO)4 was examined with thermoanalytical methods (TG/DSC with coupled gas analysis) and the Guinier-Simon technique: it decomposes at 260°C in an endothermic reaction to Lu2O3 and Cs2CO3.  相似文献   

18.
The synthesis and crystal structure of a new fluoromanganate(III), [(H3N(CH2)2)2NH2]2[MnF5(H2O)]3, is reported. The unit cell is unusually large: monoclinic, P21/c (no. 14), a = 41.0512(13) Å; b = 9.6469(4) Å; c = 12.8021(7) Å; β = 91.927(4)°; Z = 8, R = 0.0627 and wR2 = 0.1347. The [MnF5(H2O)]2– anions are octahedral with a strong distortion along the F–Mn OH2 axes due to the Jahn-Teller effect. A very rich intermolecular hydrogen bond framework is present, leading to chains of octahedra linked by double-hydrogen bonds. The polarized optical spectra on single crystals are explained in terms of the intraconfigurational d4 transitions split by a ligand field of C4v symmetry.  相似文献   

19.
Synthesis, Crystal Structures, and Vibrational Spectra of [OsCl(acac)(EPh3)], E = P, As, Sb By reaction of tetrachloroacetylacetonatoosmate(IV) with PPh3, AsPh3 or SbPh3 in ethanol the complexes [OsCl(acac)(EPh3)], E = P, As, Sb are formed, which are purified by chromatography on silica gel. X-ray crystal structure determinations of the isotypic single crystals of [OsCl(acac)(EPh3)] (monoclinic, space group P 21/c, Z = 4; E = P ( 1 ): a = 12.972(2), b = 18.255(2), c = 16.517(2) Å, β = 112.61(2)°; E = As ( 2 ): a = 13.173(5), b = 18.299(5), c = 16.429(5) Å, β = 112.346(5)°; E = Sb ( 3 ): a = 13.573(3), b = 18.520(3), c = 16.440(9) Å, β = 111.78(2)°) result in mean bond distances Os–P = 2.412, Os–As = 2.485, Os–Sb = 2.619, Os–Cl = 2.354 and Os–O = 2.032 Å. The IR spectra (10 K) exhibit the inner ligand vibrations of the acac and EPh3 groups with nearly constant frequencies and the stretching vibrations of OsP at 500–524, of OsAs at 330–339, of OsSb at 271–278, of OsCl at 317–322 and of Os–O in the range 460–694 cm–1.  相似文献   

20.
Preparation and Crystal Structure of (n-Bu4N)3[Ir(NCS)(SCN)5] The evaporated ethanolic extrakt of the reaction product of K3[IrCl6] and HNO3, refluxed with an aqueous KSCN solution yields a mixture of the linkage isomers [Ir(NCS)n(SCN)6?-n]3?, n = 0? 2, and small amounts of linkage isomeric chloropentarhodanoiridates(III), from which [Ir(NCS)(SCN)5]3? has been isolated by ion exchange chromatography on DEAE-cellulose. The X-Ray structure determination on a single crystal of (n-Bu4N)3[Ir(NCS)(SCN)5] (monoclinic, space group P 21/a, a = 17.513(5), b = 32.607(5), c = 23.661(5) Å, β = 94.757(5)°, Z = 8) confirms the existance of a heteroleptic hexakis(thiocyanato(N)-thiocyanato(S))iridate(III) with an Ir? N distance of 2.03 Å and Ir? S bond lengths between 2.29 and 2.38 Å. The SCN groups with angles between 166 and 175° are nearly linear with Ir? S? C angles from 99.9 to 109.4°. The Ir? N? C angles of the two crystallographic independent anions are 166 and 174°.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号