首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The reaction of the 1,2-diazepino[3,4-b]quinoxalines 2a,b or 3a,b with N-bromosuccinimide/water resulted in ring transformation to give the 1,4-dihydro-4-oxopyridazino[3,4-b]quinoxalines 4a,b , respectively.  相似文献   

2.
The reaction of 6-chloro-2-(1-methylhydrazino)quinoxaline 4-oxide 8 with furfural, 3-methyl-2-thiophene-carbaldehyde, 2-pyrrolecarbaldehyde, 4-pyridinecarbaldehyde and pyridoxal hydrochloride gave 6-chloro-2-[2-(2-furylmethylene)-1-methylhydrazino]quinoxaline 4-oxide 5a , 6-chloro-2-[1-methyl-2-(3-methyl-2-thienyl-methylene)hydrazino]quinoxaline 4-oxide 5b , 6-chloro-2-[1-methyl-2-(2-pyrrolylmethylene)hydrazino]quinoxa-line 4-oxide 5c , 6-chloro-2-[1-methyl-2-(4-pyridylmethylene)hydrazino]quinoxaline 4-oxide 5d and 6-chloro-2-[2-(3-hydroxy-5-hydroxymethyl-2-methyl-4-pyridylmethylene)-1-methylhydrazino]quinoxalme 4-oxide 5e , respectively. The reaction of compound 5a or 5b with 2-chloroacrylonitrile afforded 8-chloro-3-(2-furyl)-4-hydroxy-1-methyl-2,3-dihydro-1H-1,2-diazepino[3,4-b]quinoxaline-5-carbonitrile 6a or 8-chloro-4-hydroxy-1-methyl-3-(3-methyl-2-thienyl)-2,3-dihydro-1H-1,2-diazepino[3,4-b]quinoxaline-5-carbonitrile 6b , respectively, while the reaction of compound 5e with 2-chloroacrylonitrile furnished 11-chloro-7,13-dihydro-4-hydroxy-methyl-5,14-methano-1,7-dimethyl-16-oxopyrido[3′,4′:9,8][1,5,6]oxadiazonino[3,4-b]quinoxaline 7.  相似文献   

3.
The reaction of the hydrazones 5a-c with 2-chloroacrylonitrile produced the 1,2-diazepino[3,4-b]quinoxaline hydrochlorides 6a-c , which were transformed into the 5,6,7,13-tetrahydro-5,14-methano-16-oxo-1,5,6-benzoxadiazonino[3,4-b]quinoxalines 7a-c , respectively. The oxidation of 7a-c with diethyl azodicarboxylate afforded the 7,13-dihydro-5,14-methano-16-oxo-1,5,6-benzoxadiazonino[3,4-b]quinoxalines 8a-c , respectively. Compounds 7a-c and 8a-c were also obtained by a one-pot synthesis from 5a-c and 6a-c , respectively.  相似文献   

4.
The 2‐(1‐methylhydrazino)quinoxaline 4‐oxides 9a,b were converted into the pyridazino[3,4‐b]‐quinoxalines 10a,b,15a,b,22 and 1,2‐diazepino[3,4‐b]quinoxalines 29a‐c , which were further transformed into the 3‐substituted 1‐methylpyridazino[3,4‐b]quinoxalin‐4(1H)‐ones 5–8 .  相似文献   

5.
The reaction of the quinoxaline N‐oxide 1 with thiophene‐2‐carbaldehyde gave 6‐chloro‐2‐[1‐methyl‐2‐(2‐thienylmethylene)hydrazino]quinoxaline 4‐oxide 5 , whose reaction with 2‐chloroacrylonitrile afforded 8‐chloro‐2,3‐dihydro‐4‐hydroxy‐1‐methyl‐3‐(2‐thienyl)‐1H‐1,2‐diazepino[3,4‐b]quinoxaline‐5‐carbonitrile 6 . The reaction of compound 6 with various alcohols in the presence of a base effected alcoholysis to provide the 5‐alkoxy‐8‐chloro‐2,3,4,6‐tetrahydro‐1‐methyl‐4‐oxo‐3‐(2‐thienyl)‐1H‐1,2‐diazepino[3,4‐b]‐quinoxalines 7a‐d . The reaction of compounds 7a and 7b with diethyl azodicarboxylate effected dehydrogenation to give the 5‐alkoxy‐8‐chloro‐4,6‐dihydro‐1‐methyl‐4‐oxo‐3‐(2‐thienyl)‐1H‐1,2‐diazepino[3,4‐b]‐quinoxalines 8a and 8b , respectively. Compounds 8a and 8b were found to show good algicidal activities against Selenastrum capricornutum and Nitzchia closterium.  相似文献   

6.
Novel 1-aryl-1H- and 1-aryl-3-heteroaryl-1H-pyrazolo[3,4-b]quinoxalines (flavazoles) 9a-c, 12, 13 were synthesized from 3-methyl-2-oxo-1,2-dihydroquinoxaline 5 and the 3-triazolylmethylene-2-oxo-1,2,3,4-tetrahydroquinoxaline 6, respectively, via a facile hydrazone synthesis using aryl diazonium salts. Some of the above flavazoles and their related compounds exhibited the antifungal activity in some extent. The above results are described.  相似文献   

7.
The pyridazino[3,4-b]quinoxalines 6a,b and pyrazolo[3,4-b]quinoxaline hydrochloride 9 were synthesized by the 1,3-dipolar cycloaddition reaction of 6-chloro-2-(1-methylhydrazino)quinoxaline 4-oxide 5 with dimethyl or diethyl acetylenedicarboxylate and 2-chloroacrylonitrile, respectively. The reaction mechanisms were postulated for the formation of 6a,b and 9 .  相似文献   

8.
The reactions of 3-methyl-2-oxo-1,2-dihydroquinoxaline 3 with chlorophenyl diazonium salts afforded the hydrazones 4a-c , whose chlorinations with phosphoryl chloride gave the dichlorides 5a-c . Refluxing of the dichlorides 5a-c and base in N,N-dimethylformamide provided the 1-aryl-1H-pyrazolo[3,4-b]quinoxalines 6a-c .  相似文献   

9.
The reaction of the 2-substituted 6-chloroquinoxaline 4-oxides 1a or 1b with 2-fold molar amount of methyl propiolate resulted in the 1,3-dipolar cycloaddition reaction to give 8-chloro-1,3-bismethoxycarbonyl-4-(piperidin-1-yl)pyrrolo[1,2-a]quinoxaline 4a or 8-chloro-1,3-bismethoxycarbonyl-4-(morpholin-4-yl)pyrrolo-[1,2-a]quinoxaline 4b , respectively. Compound 4a or 4b was transformed into 8-chloro-3-methoxycarbonyl-4-(piperidin-1-yl)pyrrolo[1,2-a]quinoxaline 5a or 8-chloro-3-methoxycarbonyl-4-(morpholin-4-yl)pyrrolo[1,2-a]-quinoxaline 5b , respectively. The structure of 4a,b was confirmed by the NOE measurement among the C1 -H , C 2-H and C 9-H proton signals of 5a,b . An additional reaction mechanism was proposed for the ring transformation of isoxazolo[2,3-a]quinoxalines into pyrrolo[1,2-a]quinoxalines.  相似文献   

10.
Isatoic anhydride ( 1a ) and 5-chloroisatoic anhydride ( 1b ) were treated with 2-(1-methylhydrazino)ethanol ( 2 ) to produce 2-aminobenzoic acid 2-(2-hydroxyethyl)-2-methylhydrazide ( 3a ) and its 5-chloro analog 3b , respectively. Treatment of 3a and 3b with carbon disulfide gave, respectively, 2,3-dihydro-3-[(2-hydroxyethyl)methylamino]-2-thioxo-4-(1H)quinazolinone ( 4a ) and its 6-chloro analog 4b . Compounds 4a and 4b afforded 5,6-dihydro-5-methyl-2-thioxo-4H,8H-[1,3,5,6]oxathiadiazocino[4,5-b]quinazolin-8-one ( 5a ) and its 10-chloro analog 5b , respectively, upon treatment with thiophosgene. Compound 5a could be produced directly from 3a and thiophosgene. Treatment of 4a and 4b with trifluoroacetic anhydride followed by potassium carbonate gave 3,4-dihydro-4-methyl-2H,6H-[1,3,4]thiadiazino[2,3-b]quinazolin-6-one ( 7a ) and its 8-chloro analog 7b , respectively. Treatment of 4a with thionyl chloride also gave 7a , but 4b and thionyl chloride afforded a mixture of 7b and 8-chloro-3,4-dihydro-4-methyl-2H,6H-[1,3,4]oxadiazino[2,3-b]quinazolin-6-one ( 10 ). The dimethyl analogs of 4a and 4b ( 13a and 13b ) upon treatment with thiophosgene afforded 3,4-dihydro-2,2,4-trimethyl-2H,6H-[1,3,4]oxadiazino[2,3-b]quinazolin-6-one ( 14a ) and its 8-chloro analog 14b , respectively.  相似文献   

11.
3-(1-Benzoyl)ethyl-1H-pyrido[2,3-b]pyrazin-2-one ( 7 ), 3-(1-ethoxycarbonyl)ethyl-1H-pyrido[2,3-b]-pyrazin-2-one ( 8 ), and 3-(1-benzoyl)ethyl-1H-quinoxalin-2-one ( 9 ) exist only in the imine form due to the steric effect of the methyl substituent. As regards the imine-enamine tautomerism, 3-(β-carbonylmethylene) derivatives of 1,2-dihydro-4H-pyrido[2,3-b]pyrazin-3-one such as 12 and 15–18 gradually change from the enamine form to the imine form with elevated temperatures; however, 3-(carbonylmethylene) derivatives of 3,4-dihydro-1H-pyrido[2,3-b]pyrazin-2-one such as 10, 19 and 20 show little temperature effect. 2-Phenacylidene-1,2-dihydro-4H-pyrido[3,4-b]pyrazin-3-one ( 21 ) and 3-phenacylidene-3,4-dihydro-1H-pyrido[3,4-b]pyrazin-2-one ( 22 ), which exist in the enamine form, show no temperature effect.  相似文献   

12.
To determine the structures of two isomeric products, 2-phenacylidene-1,2-dihydro-4H-pyrido[2,3-b]pyrazin-3-one (2) and 3-phenacylidene-3,4-dihydro-1H-pyrido[2,3-b]pyrazin-2-one (3) obtained by condensation of 2,3-diaminopyridine (1) with ethyl benzoylpyruvate [1–3], these compounds were hydrolyzed to give 2-methyl-4H-pyrido[2,3-b]pyrazin-3-one (4) and 3-methyl-1H-pyrido[2,3-b]pyrazin-2-one (5) , respectively [4,5]. Both hydrolysates 4 and 5 were hydrogenated to afford 2-methyl-1,2-dihydro-4H-pyrido[2,3-b]pyrazin-3-one (6) and 3-methyl-3,4-dihydro-1H-pyrido[2,3-b]pyrazin-2-one (7) . The latter compound was identical with an unequivocally synthesized compound providing proof for the structures of all these compounds.  相似文献   

13.
The new α,α′-diimine ligands with benzimidazole moiety were synthesized based on the rearrangement of 3-aroylquinoxalin-2(1H)-ones when exposed to 4,5-diamino-2,1,3-benzoxadiazole, 4,5-diamino-2,1,3-benzothiadiazole and 5,6-diaminoquinoxaline. Among them, we report the first examples of the new heterocyclic system namely benzo[4′,5′]imidazo[1′,2′:1,2]quinolino[3,4-b and 4,3-b][1,2,5]oxadiazolo[3,4-f]quinoxalines, which exhibits an interesting electrochemical behavior. All compounds were fully characterized by IR, 1H and 13C NMR spectroscopies, and mass spectrometry.  相似文献   

14.
The reaction of 6-chloro-2-(1-methylhydrazino)quinoxaline 4-oxide 1 with ethyl 2-ethoxymethylene-2-cyano-acetate or ethoxymethylenemalononitrile gave 6-chloro-2-[2-(2-cyano-2-ethoxycarbonylvinyl)-1-methylhy-drazino]quinoxaline 4-oxide 3a or 6-chloro-2-[2-(2,2-dicyanovinyl)-1-methylhydrazino]quinoxaline 3b , respectively. The reaction of 3a with a base afforded 7-chloro-1-methyl-1,5-dihydropyridazino[3,4-b]quinoxaline 4 . From the NOE spectral data, the 1-methyldihydropyridazino[3,4-b]quinoxalines 2a, 2b and 4 were found to exist as the 1,5-dihydro form in a dimethyl sulfoxide or trifluoroacetic acid/dimethyl sulfoxide solution.  相似文献   

15.
The chlorination of the α-hydrazonoester 4 with phosphoryl chloride/pyridine gave 3-[α-(o-chlorophenylhydrazono)methoxycarbonylmethyl]-2-chloroquinoxaline 5 , whose cyclization with 1,8-diazabicyclo[5,4,0]-7-undecene afforded 3-methoxycarbonyl-1-(o-chlorophenyl)-1H-pyrazolo[3,4-b]quinoxaline 6 . The reaction of 6 with hydrazine hydrate provided 3-hydrazinocarbonyl-1-(o-chlorophenyl)-1H-pyrazolo[3,4-b]quinoxaline 7 , whose reactions with methyl and allyl isothiocyanates furnished 3-(2,3-dihydro-4-methyl-3-thioxo-4H-1,2,4-triazol-5-yl)-1-(o-chlorophenyl)-1H-pyrazolo[3,4-b]quinoxaline 2 and 3-(4-allyl-2,3-dihydro-3-thioxo-4H-1,2,4-triazol-5-yl)-1-(o-chloropheny)-1H-pyrazolo[3,4-b]quinoxaline 8 , respectively. Moreover, the reactions of 7 with triethyl orthoformate and orthoacetate gave 1-(o-chlorophenyl)-3-(1,3,4-oxadiazol-5-yl)-1H-pyrazolo-[3,4-b]quinoxaline 9a and 1(o-chlorophenyl)-3-(2-methyl-1,3,4-oxadiazol-5-yl)-1H-pyrazolo[3,4-b]quinoxaline 9b , respectively.  相似文献   

16.
The reaction of 2,6-dichloroquinoxaline 4-oxide 4 with methylhydrazine gave 6-chloro-2-(1-methylhydrazino)quinoxaline 4-oxide 5, whose reaction with dimethyl acetylenedicarboxylate or 2-chloroacrylonitrile resulted in the 1,3-dipolar cycloaddition reaction to afford 7-chloro-3,4-bismethoxycarbonyl-1-methyl-1,2-dihydropyridazino[3,4-b]quinoxaline 6 or 6-chloro-3-hydroxymethylene-1-methyl-2,3-dihydro-1H-pyrazolo[3,4-b] quinoxaline hydrochloride 7, respectively.  相似文献   

17.
(Z)-3-(α-Alkoxycarbonyl-α-cyanomethylene)-2-oxo-1,2,3,4-tetrahydroquinoxalines 3 and (Z)-3-(α-alkoxycarbonyl-α-cyanomethylene)-3,4-dihydrobenzo[g]quinoxalin-2(1H)-ones 5 possessing various alkoxycarbonyl groups were prepared in good yields directly from the reaction of dialkyl (E)-2,3-dicyanobutendioates 1 with o-phenylenediamine ( 2 ) or with 2,3-diaminonaphthalene ( 4 ), respectively. Furthermore, 2,3-diaminopyridine ( 6 ) and 3,4-diaminopyridine ( 7 ) were reacted with the diethyl ester 1b to give (Z)-2-(α-cyano-α-ethoxycarbonylmethylene)-1,2-dihydro-4H-pyrido[2,3-b]pyrazin-3-one ( 8 ) and (Z)-3-(α-cyano-α-ethoxycarbonylmethylene)-3,4-dihydro-1H-pyrido[3,4-b]pyrazin-2-one ( 9 ), respectively. The structural studies of 3, 5, 8 , and 9 were carried out by nmr experiments in some details.  相似文献   

18.
A new class of quinolones, 1,4-dihydro-4-oxopyridazino[3,4-b]quinoxaline-3-carboxylic acids and related compounds, were synthesized via oxidation of 1,5-dihydropyridazino[3,4-b]quinoxalines obtained from 2-hydrazinoquinoxaline 4-oxides. Some of the 1,5-dihydropyridazino[3,4-b]quinoxalines, 1,4-dihydro-4-oxopyridazino[3,4-b]quinoxaline-3-carboxylic acids, and related compounds showed biological activity.  相似文献   

19.
The reaction of the 6-chloro-2-(1-methyl-2-thiocarbamoylhydrazino)quinoxaline 4-oxides 3a-d with trifluoroacetic anhydride gave the 2-(N-aryl)trifluoroacetamido-8-chloro-4-methyl-4H-1,3,4-thiadiazino-[5,6-b]quinoxalines 7a-d , respectively, while the reflux of compounds 3a-c in N,N-dimethylformamide afforded the mesoionic triazolo[4,3-a]quinoxaline 4 . Hydrolysis of compounds 7a-d with triethylamine/water provided the 2-arylamino-8-chloro-4-methyl-4H-1,3,4-thiadiazino[5,6-b)]quinoxalines 8a-d , respectively.  相似文献   

20.
The reaction of the hydrazone 3a with hydrazine hydrate in DBU/ethanol conveniently gave 3-(4-amino-5-methyl-4H-1,2,4-triazol-3-ylmethylene)-2-oxo-1,2,3,4-tetrahydroquinoxaline 6 . The reactions of 6 with an equimolar and 2-fold molar amount of nitrous acid afforded 3-(α-hydroxyimino-4-amino-5-methyl-4H-1,2,4-triazol-3-ylmethyl)-2-oxo-1,2-dihydroquinoxaline 9 and 3-(α-hydroxyimino-5-methyl-2H-1,2,4-triazol-3-ylmethyl)-2-oxo-1,2-dihydroquinoxaline 10 , respectively, which were converted into the 3-heteroarylisoxazolo[4,5-b]quin-oxalines 13a,b and 11 , respectively. Compound 9 was also cyclized into the 8-quinoxalinyl-1,2,4-triazolo-[3,4-f][1,2,4]triazines 14a,b .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号