首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The reaction of 6-chloro-2-(1-methylhydrazino)quinoxaline 4-oxide 1 with ethyl 2-ethoxymethylene-2-cyano-acetate or ethoxymethylenemalononitrile gave 6-chloro-2-[2-(2-cyano-2-ethoxycarbonylvinyl)-1-methylhy-drazino]quinoxaline 4-oxide 3a or 6-chloro-2-[2-(2,2-dicyanovinyl)-1-methylhydrazino]quinoxaline 3b , respectively. The reaction of 3a with a base afforded 7-chloro-1-methyl-1,5-dihydropyridazino[3,4-b]quinoxaline 4 . From the NOE spectral data, the 1-methyldihydropyridazino[3,4-b]quinoxalines 2a, 2b and 4 were found to exist as the 1,5-dihydro form in a dimethyl sulfoxide or trifluoroacetic acid/dimethyl sulfoxide solution.  相似文献   

2.
The reaction of 2,6-dichloroquinoxaline 4-oxide 4 with methylhydrazine gave 6-chloro-2-(1-methylhydrazino)quinoxaline 4-oxide 5, whose reaction with dimethyl acetylenedicarboxylate or 2-chloroacrylonitrile resulted in the 1,3-dipolar cycloaddition reaction to afford 7-chloro-3,4-bismethoxycarbonyl-1-methyl-1,2-dihydropyridazino[3,4-b]quinoxaline 6 or 6-chloro-3-hydroxymethylene-1-methyl-2,3-dihydro-1H-pyrazolo[3,4-b] quinoxaline hydrochloride 7, respectively.  相似文献   

3.
The transient existence of thieno[3,4-b]quinoxaline ( 2d ) as a product of dehydration of 1,3-dihydrothieno[3,4-b]quinoxaline 2-oxide ( 5 ) was demonstrated by trapping experiments with N-phenylmaleimide and dimethyl acetylenedicarboxylate. Attempts to isolate 2d from reaction mixtures arising from dehydration of 5 and from dehydrogenation of 1,3-dihydro-thieno[3,4-b]quinoxaline ( 8 ) were unsuccessful.  相似文献   

4.
The reaction of 6-chloro-2-(1-methylhydrazino)quinoxaline 4-oxide 8 with furfural, 3-methyl-2-thiophene-carbaldehyde, 2-pyrrolecarbaldehyde, 4-pyridinecarbaldehyde and pyridoxal hydrochloride gave 6-chloro-2-[2-(2-furylmethylene)-1-methylhydrazino]quinoxaline 4-oxide 5a , 6-chloro-2-[1-methyl-2-(3-methyl-2-thienyl-methylene)hydrazino]quinoxaline 4-oxide 5b , 6-chloro-2-[1-methyl-2-(2-pyrrolylmethylene)hydrazino]quinoxa-line 4-oxide 5c , 6-chloro-2-[1-methyl-2-(4-pyridylmethylene)hydrazino]quinoxaline 4-oxide 5d and 6-chloro-2-[2-(3-hydroxy-5-hydroxymethyl-2-methyl-4-pyridylmethylene)-1-methylhydrazino]quinoxalme 4-oxide 5e , respectively. The reaction of compound 5a or 5b with 2-chloroacrylonitrile afforded 8-chloro-3-(2-furyl)-4-hydroxy-1-methyl-2,3-dihydro-1H-1,2-diazepino[3,4-b]quinoxaline-5-carbonitrile 6a or 8-chloro-4-hydroxy-1-methyl-3-(3-methyl-2-thienyl)-2,3-dihydro-1H-1,2-diazepino[3,4-b]quinoxaline-5-carbonitrile 6b , respectively, while the reaction of compound 5e with 2-chloroacrylonitrile furnished 11-chloro-7,13-dihydro-4-hydroxy-methyl-5,14-methano-1,7-dimethyl-16-oxopyrido[3′,4′:9,8][1,5,6]oxadiazonino[3,4-b]quinoxaline 7.  相似文献   

5.
The pyridazino[3,4-b]quinoxaline 12 was synthesized by the cyclization of the α-arylhydrazonoacyl-hydrazide 11. The reaction of compound 12 with phosphoryl chloride gave pyridazino[3,4-b]quinoxaline 13, whose reactions with sodium azide or cyclic secondary amines provided pyridazino[3,4-b]quinoxalines 14,17 and 18, respectively. The acylhydrazide 15 was also cyclized to pyridazino[3,4-b]quinoxaline 16.  相似文献   

6.
The chlorination of the α-hydrazonoester 4 with phosphoryl chloride/pyridine gave 3-[α-(o-chlorophenylhydrazono)methoxycarbonylmethyl]-2-chloroquinoxaline 5 , whose cyclization with 1,8-diazabicyclo[5,4,0]-7-undecene afforded 3-methoxycarbonyl-1-(o-chlorophenyl)-1H-pyrazolo[3,4-b]quinoxaline 6 . The reaction of 6 with hydrazine hydrate provided 3-hydrazinocarbonyl-1-(o-chlorophenyl)-1H-pyrazolo[3,4-b]quinoxaline 7 , whose reactions with methyl and allyl isothiocyanates furnished 3-(2,3-dihydro-4-methyl-3-thioxo-4H-1,2,4-triazol-5-yl)-1-(o-chlorophenyl)-1H-pyrazolo[3,4-b]quinoxaline 2 and 3-(4-allyl-2,3-dihydro-3-thioxo-4H-1,2,4-triazol-5-yl)-1-(o-chloropheny)-1H-pyrazolo[3,4-b]quinoxaline 8 , respectively. Moreover, the reactions of 7 with triethyl orthoformate and orthoacetate gave 1-(o-chlorophenyl)-3-(1,3,4-oxadiazol-5-yl)-1H-pyrazolo-[3,4-b]quinoxaline 9a and 1(o-chlorophenyl)-3-(2-methyl-1,3,4-oxadiazol-5-yl)-1H-pyrazolo[3,4-b]quinoxaline 9b , respectively.  相似文献   

7.
The o-diamine, 3,4-diamino-1,2,5-thiadiazole ( 2 ), was synthesized from 3,4-dichloro-1,2,5-thiadiazole ( 3 ) hy three methods. Aqueous glyoxal cyclized 2 into [1,2,5]thiadiazolo[3,4–6]-pyrazine ( 14 ). 3,4-Dichloro-1,2,5-thiadiazole 1,1-dioxide ( 18 ) reaeted with 2 to give 1,3-dihydro-bis[1,2,5]thiadiazolo[3,4-b:3′,4′-e]pyrazine 2,2-dioxide ( 19 ). The reaction of 2 with selenium oxyehloride led to [1,2,5]selenadiazolo[3,4-c] [1,2,5]thiadiazole ( 12 ). Ring closure of 2,3-diaminoquinoxaline ( 4 ) with thionyl chloride or selenium oxychloride gave [1,2,5]thiadiazolo-[3,4-b]quinoxaline ( 21 ) and [1,2,5]selenadiazolo[3,4-b]quinoxaline ( 22 ), respectively. Sulfurous acid reduced 21 to the 4,9-dihydro derivative 23 , which was reoxidized to 21 with chloranil. Aqueous hase hydrolyzed 21 to 4 via the hydrated intermediate 24 . Aqueous glyoxal cyclized 4 to the covalent hydrate of pyrazino[2,3-b]quinoxaline ( 26 ), 27 , which was dehydrated to 26 . Compound 26 underwent rapid addition of two alcohols in a process analogous to covalent hydration.  相似文献   

8.
The 1,3-dipolar cycloaddition reaction of the quinoxaline 4-oxides 4a,b with 2-chloroacrylonitrile gave the 2,3-dihydro-1H-1,2-diazepino[3,4-b]quinoxalines 5a,b , respectively, which were converted into the 2,3,4,6-tetrahydro-1H-1,2-diazepino[3,4-b]quinoxalines 7a,b and 8a,b , respectively.  相似文献   

9.
Pyrazino[2,3-b]quinoxaline 1,4-dioxides 3a-e were prepared by reacting Furoxano[3,4-b]quinoxaline with alkynes and alkenes.  相似文献   

10.
The reaction of o-phenylenediamine with a β-ketoacid, leads in most cases to quinoxalinones. Their structure has been determined as well as that of their corresponding hydrazones. The reaction of hydrazine with these quinoxalinones gives dihydropyridazino[3,4-b]quinoxalines, the structure of which has been ascertained. It has been shown that among the six possible formulas, the only 1,2-dihydro structure fits with the spectroscopic data. On the contrary, N-substituted o-phenylenediamines lead to 2,10-dihydro derivatives. The electrochemical behavior of the 2,10-dihydro-10-methyl-3-phenylpyridazino[3,4-b]quinoxaline has been investigated. It has also been shown that the 3,4,6-trichloropyridazine reacts with o-phenylenediamines to give 5,10-dihydropyridazino[3,4-b]quinoxalines. These compounds can be oxidized to give the new heterocycle pyridazino[3,4-b]quinoxaline.  相似文献   

11.
Novel 4-chlorophenylhydrazono-3-oxo-1,2,3,4-tetrahydropyridazino[3,4-b]quinoxalines 10a-c were synthesized by the cyclization of the α-hydrazonohydrazides 8a-c. The chlorination of 10a with phosphoryl chloride afforded 3-chloro-4-[2-(o-chlorophenyl)hydrazino]pyridazino[3,4-b]quinoxaline 12.  相似文献   

12.
The reaction of 6-chloro-2-hydrazinoquinoxaline 4-oxide 5 with triethyl orthoformate gave 7-chloro-1,2,4-triazolo[4,3-a]quinoxaline 5-oxide 6. The reaction of compound 6 with phenyl isocyanate afforded 7-chloro-4-phenylamino-1,2,4-triazolo[4,3-a]quinoxaline 7 , while the reaction of compound 6 with phenyl isothiocyanate resulted in deoxygenation to provide 7-chloro-1,2,4-triazolo[4,3-a]quinoxaline 8. However, the reaction of compound 6 with allyl isothiocyanate effected the 1,3-dipolar cycloaddition reaction, but not deoxygenation, to furnish 9-chloro-4,5-dihydroisoxazolo[2,3-a][1,2,4]triazolo[3,4-c]quinoxalin-5-ylmethylisothiocyanate 9. Moreover, the reduction of compound 9 with iron/acetic acid resulted in ring transformation to give 11 -chloro-7-hydroxy-4-thioxo-4,5,6,7,8,9-hexahydro-1,2,4-triazolo[4,3,2- o,p][1,3]diazocino[4,5-b]quinoxaline 10 , whose acetylation afforded 5-acetyl-11-chloro-7-hydroxy-4-thioxo-4,5,6,7,8,9-hexahydro-1,2,4-triazolo[4,3,2-o,p][1,3]diazocino[4,5-b]quinoxaline 11.  相似文献   

13.
The reaction of the 1,2-diazepino[3,4-b]quinoxalines 2a,b or 3a,b with N-bromosuccinimide/water resulted in ring transformation to give the 1,4-dihydro-4-oxopyridazino[3,4-b]quinoxalines 4a,b , respectively.  相似文献   

14.
The reaction of the hydrazones 5a-c with 2-chloroacrylonitrile produced the 1,2-diazepino[3,4-b]quinoxaline hydrochlorides 6a-c , which were transformed into the 5,6,7,13-tetrahydro-5,14-methano-16-oxo-1,5,6-benzoxadiazonino[3,4-b]quinoxalines 7a-c , respectively. The oxidation of 7a-c with diethyl azodicarboxylate afforded the 7,13-dihydro-5,14-methano-16-oxo-1,5,6-benzoxadiazonino[3,4-b]quinoxalines 8a-c , respectively. Compounds 7a-c and 8a-c were also obtained by a one-pot synthesis from 5a-c and 6a-c , respectively.  相似文献   

15.
Starting from the readily available 2-methyl-3-benzoylfuran, 1-phenylthieno[3,4-b]furan and 1-phenyl-seleno[3,4-b]furan were prepared. Also, starting from phenyl 3-methylindol-2-yl ketone and aryl 2-methyl-indole-3-yl ketones a series of substituted thieno[3,4-b]indoles and substituted seleno[3,4-b]indoles were prepared.  相似文献   

16.
Treatment of 2-(4,9-dihydro-3H-pyrido[3,4-b]indol-1-yl)-1-methylcyclohexanol ( 2a ) with acetic anhydride or methyl isocyanate gave 2-acetyl-2,3,4,9-tetrahydro-1-(6-oxoheptylidene)-1H-pyrido[3,4-b]indole ( 3 ) or 1,3,4,9-tetrahydro-N-methyl-1-(6-oxoheptylidene)-2H-pyrido[3,4-b]indole-2-carboxamide ( 4 ), respectively. Simpler analogues, 1-alkyl-4,9-dihydro-3H-pyrido[3,4-b]indoles, 7 , subjected to identical reaction conditions, gave 2-acetyl-1-alkylidene-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indoles 8 and 1,3,4,9-tetrahydro-N-methyl-1-alkyli-dene-2H-pyrido[3,4-b]indole-2-carboxamides 9 , respectively. A limited lanthanide shift reagent study to determine stereochemical assignments was also performed.  相似文献   

17.
The reaction of 6-chloro-2-(l-methylhydrazino)quinoxaline 1-oxide 3 with acetylenedicarboxylates gave the 8-chloro-1-memyl-1,5-dihydropyridazino[3,4-b]quinoxaline-3,4-dicarboxylates 4a,b and 2-(pyrazol-4-yl)quinoxaline 1-oxides 5a,b . The formation of compounds 4a,b would follow the 1,3-dipolar cycloaddition reaction, subsequent 1,2-hydrazino migration, and then dehydrative cyclization, while the production of compounds 5a,b would proceed via the addition of the hydrazino group to acetylene-dicarboxylate leading to the construction of a pyrazole ring, followed by rearrangement of the pyrazole ring. Compounds 5a,b were deoxidized with phosphoryl chloride/N,N-dimethylformamide to change into the 4-(quinoxalin-2-yl)pyrazole-3-carboxylates 8a,b .  相似文献   

18.
The synthesis of some pyrido[3,4-b]pyrano[3,4-b]indoles ( 3 ) from 3-hydroxy-4-(3-indolyl)piperidines ( 6 ) is reported.  相似文献   

19.
Starting from the readily available aryl 3-methyl-2-benzo[b] furyl ketones a series of 3-sub-stituted thieno[3,4-b] benzofurans and 3-substituted selenolo[3,4-b] benzofurans were prepared in high yield. The parent compound, thieno[3,4-b] benzofuran was prepared through the reaction of thioacetamide with 2-chloromethyl-3-formylbenzo[b] furan in moderate yield.  相似文献   

20.
The reaction of 6-chloro-2-(1-methylhydrazino)quinoxaline 4-oxide 8 with acetic anhydride resulted in the intramolecular cyclization to give 8-chloro-2,4-dimethyl-4H-1,3,4-oxadiazino[5,6-b]quinoxaline 7a , while the reaction of compound 8 with acetic anhydride/pyridine or acetic anhydride/acetic acid afforded 3-(2,2-diacetyl-1-memymydrazmo)-7-chloro-2-oxo-1,2-dihydroquinoxaline 9 , effecting no intramolecular cyclization. The reaction of 2-(2-acetyl-1-methylhydrazino)-6-chloroquinoxaline 4-oxide 10a or 6-chloro-2-(1-methyl-2-trifluoroacetylhydrazino)quinoxaline 4-oxide 10b with phosphoryl chloride provided compound 7a or 8-chloro-4-memyl-2-trifluoromethyl-4H-1,3,4-oxadiazino[5,6-b]quinoxaline 7b , respectively. The reaction of compound 7b with phosphorus pentasulfide gave 7-chloro-3-(1-methyl-2-trifluoroacetylhydrazino)-2-thioxo-1,2-dihydroquinoxaline 11 , whose dehydration with sulfuric acid in acetic acid afforded 8-chloro-4-methyl-2-trifluoromemyl-4H-1,3,4-thiadiazino[5,6-b]quinoxaline 12 .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号