首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents an advanced method for a 2-dimensional analysis of transient natural convection by finite element method. The present method, based on stream function—vorticity formulation, could get rid of numerical errors and constraint of perpendicular mesh subdivision, since we excluded a finite difference approximation of vorticity on no-slip boundaries. A considerable effect of upwind weighting function was examined. The method was successfully applied to a problem of natural convection around a horizontal hot cylinder.  相似文献   

2.
Aerodynamic characteristics of various geometries are predicted using a finite element formulation coupled with several numerical techniques to ensure stability and accuracy of the method. First, an edge‐based error estimator and anisotropic mesh adaptation are used to detect automatically all flow features under the constraint of a fixed number of elements, thus controlling the computational cost. A variational multiscale‐stabilized finite element method is used to solve the incompressible Navier‐Stokes equations. Finally, the Spalart‐Allmaras turbulence model is solved using the streamline upwind Petrov‐Galerkin method. This paper is meant to show that the combination of anisotropic unsteady mesh adaptation with stabilized finite element methods provides an adequate framework for solving turbulent flows at high Reynolds numbers. The proposed method was validated on several test cases by confrontation with literature of both numerical and experimental results, in terms of accuracy on the prediction of the drag and lift coefficients as well as their evolution in time for unsteady cases.  相似文献   

3.
4.
A new finite element method was used to analyze an experimental model of a radial vaned diffuser. The new method includes a streamline upwind formulation for the advection terms in the governing equations. The streamline upwind significantly reduces numerical diffusion while maintaining the stability of the conventional upwind formulation. The new finite element method also incorporates an iterative equal-order, velocity-pressure solution method based on the well-known SIMPLER algorithm. The results of the analysis are compared to flow visualization studies of the experimental model. The flow separation point for the four blade diffuser was predicted to occur at 19, 6% of the blade length from the leading edge. The experimentally determined value was 23% of the blade length. For the eight blade diffuser model, separation was predicted to occur at 43% of the blade length from the leading edge, as compared to the experimentally observed value of 50% of the blade length. With this performance comparison, the proposed finite element method has been demonstrated to be reliable for predicting complex fluid flows.  相似文献   

5.
A new interface capturing algorithm is proposed for the finite element simulation of two‐phase flows. It relies on the solution of an advection equation for the interface between the two phases by a streamline upwind Petrov–Galerkin (SUPG) scheme combined with an adaptive mesh refinement procedure and a filtering technique. This method is illustrated in the case of a Rayleigh–Taylor two‐phase flow problem governed by the Stokes equations. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

6.
Macroscopic finite elements are elements with an embedded analytical solution that can capture detailed local fields, enabling more efficient, mesh independent finite element analysis. The shape functions are determined based on the analytical model rather than prescribed. This method was applied to adhesively bonded joints to model joint behavior with one element through the thickness. This study demonstrates two methods of maintaining the fidelity of such elements during adhesive non-linearity and cracking without increasing the mesh needed for an accurate solution. The first method uses adaptive shape functions, where the shape functions are recalculated at each load step based on the softening of the adhesive. The second method is internal mesh adaption, where cracking of the adhesive within an element is captured by further discretizing the element internally to represent the partially cracked geometry. By keeping mesh adaptations within an element, a finer mesh can be used during the analysis without affecting the global finite element model mesh. Examples are shown which highlight when each method is most effective in reducing the number of elements needed to capture adhesive nonlinearity and cracking. These methods are validated against analogous finite element models utilizing cohesive zone elements.  相似文献   

7.
在均匀网格上求解对流占优问题时,往往会产生数值震荡现象,因此需要局部加密网格来提高解的精度。针对对流占优问题,设计了一种新的自适应网格细化算法。该方法采用流线迎风SUPG(Petrov-Galerkin)格式求解对流占优问题,定义了网格尺寸并通过后验误差估计子修正来指导自适应网格细化,以泡泡型局部网格生成算法BLMG为网格生成器,通过模拟泡泡在区域中的运动得到了高质量的点集。与其他自适应网格细化方法相比,该方法可在同一框架内实现网格的细化和粗化,同时在所有细化层得到了高质量的网格。数值算例结果表明,该方法在求解对流占优问题时具有更高的数值精度和更好的收敛性。  相似文献   

8.
A new upwind finite element scheme for the incompressible Navier-Stokes equations at high Reynolds number is presented. The idea of the upwind technique is based on the choice of upwind and downwind points. This scheme can approximate the convection term to third-order accuracy when these points are located at suitable positions. From the practical viewpoint of computation, the algorithm of the pressure Poisson equation procedure is adopted in the framework of the finite element method. Numerical results of flow problems in a cavity and past a circular cylinder show excellent dependence of the solutions on the Reynolds number. The influence of rounding errors causing Karman vortex shedding is also discussed in the latter problem.  相似文献   

9.
We present an efficient finite element method for computing the engineering quantities of interest that are linear functionals of displacement in elasticity based on a posteriori error estimate. The accuracy of quantities is greatly improved by adding the approximate cross inner product of errors in the primal and dual problems, which is calculated with an inexpensive gradient recovery type error estimate, to the quantities obtained from the finite element solution. With less CPU time, the accuracy of the improved quantities obtained with the proposed method on the coarse finite element mesh is similar to that of the quantities obtained from the finite element solutions on the finer mesh. Three quantities related to the local displacement, local stress and stress intensity factor are computed with the proposed method to verify its efficiency.  相似文献   

10.
A computationally efficient multigrid algorithm for upwind edge‐based finite element schemes is developed for the solution of the two‐dimensional Euler and Navier–Stokes equations on unstructured triangular grids. The basic smoother is based upon a Galerkin approximation employing an edge‐based formulation with the explicit addition of an upwind‐type local extremum diminishing (LED) method. An explicit time stepping method is used to advance the solution towards the steady state. Fully unstructured grids are employed to increase the flexibility of the proposed algorithm. A full approximation storage (FAS) algorithm is used as the basic multigrid acceleration procedure. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

11.
A two-level stabilized finite element method for the Stokes eigenvalue problem based on the local Gauss integration is considered.This method involves solving a Stokes eigenvalue problem on a coarse mesh with mesh size H and a Stokes problem on a fine mesh with mesh size h = O(H 2),which can still maintain the asymptotically optimal accuracy.It provides an approximate solution with the convergence rate of the same order as the usual stabilized finite element solution,which involves solving a Stokes eigenvalue problem on a fine mesh with mesh size h.Hence,the two-level stabilized finite element method can save a large amount of computational time.Moreover,numerical tests confirm the theoretical results of the present method.  相似文献   

12.
Various discretization methods exist for the numerical simulation of multiphase flow in porous media. In this paper, two methods are introduced and analyzed—a full‐upwind Galerkin method which belongs to the classical finite element methods, and a mixed‐hybrid finite element method based on an implicit pressure–explicit saturation (IMPES) approach. Both methods are derived from the governing equations of two‐phase flow. Their discretization concepts are compared in detail. Their efficiency is discussed using several examples. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

13.
We present a volume of fluid method, based on finite element analysis, for the 2D simulation of interfaces on an unstructured fixed mesh. Special techniques to reconstruct and advect the interface allows to track its evolution through this mesh.  相似文献   

14.
提出一种Fourier-Legendre谱元方法用于求解极坐标系下的Navier-Stokes方程,其中极点所在单元的径向采用Gauss-Radau积分点,避免了r=0处的1/r坐标奇异性。时间离散采用时间分裂法,引入数值同位素模型跟踪同位素的输运过程验证数值模拟的精度,分别利用谱元法和有限差分法的迎风差分格式求解匀速和加速坩埚旋转流动中的同位素方程。计算结果表明,有限差分法中的一阶迎风差分格式存在严重的数值假扩散,二阶迎风差分格式的数值结果较精确,增加节点可以有效地缓解数值扩散。然而,谱元法具有以较少节点得到高精度解的优势。  相似文献   

15.
A numerical method based on the finite element method is presented for simulating the two-dimensional transient motion of a viscous liquid with free surfaces. For ease of numerical treatment of the free surface expressed by a multiple-valued function, the marker particle method is employed. Numerous virtual particles are spread over all regions occupied by liquid. They move about on a fixed finite element mesh with the liquid velocity at their positions. These particles contribute nothing to the dynamics of the liquid and only serve as markers of liquid regions. The velocity field within liquid regions is calculated by solving the Navier– Stokes equations and the equation of continuity by the finite element method based on quadrilateral elements. A detailed discussion is given of the methodological problems arising in the implementation of the marker particle method on an unstructured finite element mesh and of the solutions to these problems. The proposed method is demonstrated on three sample problems: the broken dam problem, the impact of a falling liquid drop on a still liquid and the entry of a rigid block into water. Good agreement has been obtained in the comparison of the present numerical results with available experimental data.  相似文献   

16.
针对车身CAD中非同构数据格式间的转换使自由形体的近似值发生变化而导致曲面片之间产生缝隙或网格叠加的情况,提出了一种基于有限元网格、应用于车身CAD曲面网格数据自动修复的方法。该方法还能够在一定程度上局部修复原来划分有缺陷的网格,从而降低对车身CAD模型有限元网格划分的质量要求,并通过工业复杂成形件的实际处理结果验证了该方法的有效性。  相似文献   

17.
We present a nodal Godunov method for Lagrangian shock hydrodynamics. The method is designed to operate on three‐dimensional unstructured grids composed of tetrahedral cells. A node‐centered finite element formulation avoids mesh stiffness, and an approximate Riemann solver in the fluid reference frame ensures a stable, upwind formulation. This choice leads to a non‐zero mass flux between control volumes, even though the mesh moves at the fluid velocity, but eliminates volume errors that arise due to the difference between the fluid velocity and the contact wave speed. A monotone piecewise linear reconstruction of primitive variables is used to compute interface unknowns and recover second‐order accuracy. The scheme has been tested on a variety of standard test problems and exhibits first‐order accuracy on shock problems and second‐order accuracy on smooth flows using meshes of up to O(106) tetrahedra. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
发展了一种基于有限元网格退化和重组技术的类桁架拓扑优化方法,可在不改变设计域包络的情况下(如维持流型、艺术外观和附加功能等)对结构进行减重。首先,分别对二维问题和三维问题发展相应的有限元网格退化算法,并在刚度等效的意义上对网格进行重组,建立了具有杆元拓扑特征的有限元模型。其次,以全局种子网格的长度尺寸和杆元横截面积为优化变量,构造了域内双层驱动拓扑优化问题,得到具有最优体分比的杆元拓扑结构。数值算例表明,所提方法可获得新型式的结构拓扑优化方案,并可将结构拓扑优化理论推向工程化应用。  相似文献   

19.
This paper is concerned with the development of the finite element method in simulating scalar transport, governed by the convection–reaction (CR) equation. A feature of the proposed finite element model is its ability to provide nodally exact solutions in the one‐dimensional case. Details of the derivation of the upwind scheme on quadratic elements are given. Extension of the one‐dimensional nodally exact scheme to the two‐dimensional model equation involves the use of a streamline upwind operator. As the modified equations show in the four types of element, physically relevant discretization error terms are added to the flow direction and help stabilize the discrete system. The proposed method is referred to as the streamline upwind Petrov–Galerkin finite element model. This model has been validated against test problems that are amenable to analytical solutions. In addition to a fundamental study of the scheme, numerical results that demonstrate the validity of the method are presented. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

20.
When transport is advection-dominated, classical numerical methods introduce excessive artificial diffusion and spurious oscillations. Special methods are required to overcome these phenomena. To solve the advection‒diffusion equation, a numerical method is developed using a discontinuous finite element method for the discretization of the advective terms. At the discontinuities of the approximate solution, numerical advective fluxes are calculated using one-dimensional approximate Riemann solvers. The method is stabilized with a multidimensional slope limiter which introduces small amounts of numerical diffusion when sharp concentration fronts occur. In addition, the diffusive term is discretized using a mixed hybrid finite element method. With this approach, numerical oscillations are completely avoided for a full range of cell Peclet numbers. The combination of discontinuous and mixed finite elements can be easily applied to 2D and 3D models using various types of elements in regular and irregular meshes. Numerical tests show good agreement with 1D and 2D analytical solutions. This approach is compared at the same time with two different numerical methods, a standard mixed finite method and a finite volume approach with high-resolution upwind terms. Regular and irregular meshes are used for the numerical tests to study the mesh effects on the numerical results. Our data show that in all cases this approach performs well. © 1997 by John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号