首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A class of shock-capturing Petrov–Galerkin finite element methods that use high-order non-oscillatory interpolations is presented for the one-dimensional compressible Euler equations. Modified eigenvalues which employ total variation diminishing (TVD), total variation bounded (TVB) and essentially non-oscillatory (ENO) mechanisms are introduced into the weighting functions. A one-pass Euler explicit transient algorithm with lumped mass matrix is used to integrate the equations. Numerical experiments with Burgers' equation, the Riemann problem and the two-blast-wave interaction problem are presented. Results indicate that accurate solutions in smooth regions and sharp and non-oscillatory solutions at discontinuities are obtainable even for strong shocks.  相似文献   

2.
In this paper we proposed the kinetic framework based fifth-order adaptive finite difference WENO schemes abbreviated as WENO-AO-K schemes to solve the compressible Euler equations, which are quasi-linear hyperbolic equations that can admit discontinuous solutions like shock and contact waves. The formulation of the proposed schemes is based on the kinetic theory where one can recover the Euler equations by applying a suitable moment method strategy to the Boltzmann equation. The kinetic flux vector splitting strategy is used in WENO-AO framework, which produces the computationally expensive error and exponential functions. Thus, to reduce the computational cost, a physically more relevant peculiar velocity based splitting strategy is used, which is more efficient than the kinetic flux vector splitting. High order of accuracy in time is achieved using the third-order total variation diminishing Runge–Kutta (TVD-RK) scheme. Several one- and two-dimensional test cases are solved for the compressible Euler equations using the proposed fifth-order WENO-AO-K schemes and the results are compared with conventional WENO-AO scheme. Proposed schemes capture the complex flow features in a smooth region accurately, and discontinuity is also well resolved. Error analysis of the proposed schemes shows optimal convergence rates in various norms.  相似文献   

3.
We describe an adaptive finite element algorithm for solving the unsteady Euler equations. The finite element algorithm is based on a Taylor/Galerkin formulation and uses a very fast and efficient data structure to refine and unrefine the grid in order to optimize the approximation. We give a general version of the method which can be applied to moving grids with sliding interfaces and we present the results for a transient supersonic calculation of rotor-stator interaction.  相似文献   

4.
An implicit finite element method is presented for the solution of steady and unsteady inviscid compressible flows on triangular meshes under transonic conditions. The method involves a first-order time-stepping scheme with a finite element discretization that reduces to central differencing on a rectangular mesh. On a solid wall the slip condition is prescribed and the pressure is obtained from an approximation of the normal momentum equation. With this solver no artificial viscosity is added to ensure the success of the calculation. Numerical examples are given for steady and unsteady cases.  相似文献   

5.
The standard least-squares finite element method for the linearized Euler equations turns out to be inaccurate. This method is studied in detail for a system of composite type, obtained by transformation of the linearized Euler equations. The shortcomings of the method are clarified and an embedding method is constructed. It is shown numerically that this new method is O(h2)-accurate.  相似文献   

6.
An adaptive least‐squares finite element method is used to solve the compressible Euler equations in two dimensions. Since the method is naturally diffusive, no explicit artificial viscosity is added to the formulation. The inherent artificial viscosity, however, is usually large and hence does not allow sharp resolution of discontinuities unless extremely fine grids are used. To remedy this, while retaining the advantages of the least‐squares method, a moving‐node grid adaptation technique is used. The outstanding feature of the adaptive method is its sensitivity to directional features like shock waves, leading to the automatic construction of adapted grids where the element edge(s) are strongly aligned with such flow phenomena. Using well‐known transonic and supersonic test cases, it has been demonstrated that by coupling the least‐squares method with a robust adaptive method shocks can be captured with high resolution despite using relatively coarse grids. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

7.
The influence of artificial dissipation schemes on the accuracy and stability of the numerical solution of compressible flow is extensively examined. Using an implicit central difference factored scheme, an improved form of artificial dissipation is introduced which highly reduces the errors due to numerical viscosity. A function of the local Mach number is used to scale the amount of numerical damping added into the solution according to the character of the flow in several flow regimes. The resulting scheme is validated through several inviscid flow test cases.  相似文献   

8.
SUPG methods were originally developed for the scalar advection-diffusion equation and the incompressible Navier-Stokes equations. In the last few years successful extensions have been made to symmetric advective-diffusive systems and, in particular, the compressible Euler and Navier-Stokes equations. New procedures have been introduced to improve resolution of discontinuities and thin layers. In this paper a brief overview is presented of recent progress in the development and understanding of SUPG methods.  相似文献   

9.
In this paper, we propose a new lattice Boltzmann model for the compressible Euler equations. The model is based on a three‐energy‐level and three‐speed lattice Boltzmann equation by using a method of higher moments of the equilibrium distribution functions. In order to obtain second‐order accuracy, we employ the ghost field distribution functions to remove the non‐physical viscous parts. We also use the conditions of the higher moment of the ghost field equilibrium distribution functions to obtain the equilibrium distribution functions. In the numerical examples, we compare the numerical results of this scheme with those obtained by other lattice Boltzmann models for the compressible Euler equations. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

10.
本文将经作者改进后的一维时-空守恒格式推广到了二维情形,得到了一个一般形式的二维Euler方程时-空守恒格式,该格式对各种不规则几何区域内的流动问题具有很强的适应性,同时它还保留了一维格式的优点。几个典型算例的计算结果表明,本文格式不仅精度高,通用性好,而且对激波等间断具有很高的分辨率。  相似文献   

11.
In this paper, we propose a new lattice Boltzmann model for the one-dimensional compressible Euler equations. The new model is based on a three-entropy-level and three-speed lattice Boltzmann equation by using a method of higher-order moments of the equilibrium distribution functions. In order to obtain the second-order accuracy model, we employ the ghost field distribution functions to remove the non-physical dissipation terms in the Euler equations. We also use the conditions of the higher-order moments of the ghost field equilibrium distribution functions to obtain the equilibrium distribution functions. The numerical examples show that the numerical results can be compared with those classical methods.  相似文献   

12.
线性区间有限元静力控制方程的组合解法   总被引:13,自引:0,他引:13  
区间有限元的静力控制方程常被归结为区间方程组来求解。但实际上两者并不等价。本文根据不确定结构有限元分析的力学背景,直接从问题的基本参量的不确定性出发,将基本区间参量的边界组合与求解区间方程组的有关解法相结合,提出了线性区间有限元静力控制方程的两种组合解法-参量边界全组合法和组合迭代法。可以以较小的计算量获得或逼近位移和应力区间的准确界限。且不受基本参量变化范围的限制。算例分析表明文中方法是实用和可行的。  相似文献   

13.
A zonal grid methodology has been developed for the calculation of compressible fluid flows. The domain subdivision is based on patched grid systems composed of zones or blocks within which a distinct curvilinear grid is generated. The flow simulation is then carried out with a modified scheme based on the Euler finite volume solver of Ni. This scheme uses a distribution procedure that provides an easy and accurate way for the transfer of information from one block to another. This method results in a naturally conservative computation at the interfaces. It is analysed and developed for the treatment of embedded grids with a grid point common to more than four blocks.  相似文献   

14.
In the sense of method of lines, numerical solution of the unsteady compressible Euler equations in 1D, 2D and 3D is split into three steps: First, space discretization is performed by the first‐order finite volume method using several approximate Riemann solvers. Second, smoothness and Lipschitz continuity of RHS of the arising system of ordinary dimensional equations (ODEs) is analysed and its solvability is discussed. Finally, the system of ODEs is integrated in time by means of implicit and explicit higher‐order adaptive schemes offered by ODE packages ODEPACK and DDASPK, by a backward Euler scheme based on the linearization of the RHS and by higher‐order explicit Runge–Kutta methods. Time integrators are compared from several points of view, their applicability to various types of problems is discussed, and 1D, 2D and 3D numerical examples are presented. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

15.
Several explicit schemes are presented for triangular P0 and P1 finite elements. A first-order accurate upwind P0 scheme is compared to a FLIC type method. A second-order accurate Richtmyer scheme is constructed. Applications are given for the Euler system of conservation laws in the 2-dimensional case.  相似文献   

16.
Numerical solution of shallow-water equations (SWE) has been a challenging task because of its nonlinear hyperbolic nature, admitting discontinuous solution, and the need to satisfy the C-property. The presence of source terms in momentum equations, such as the bottom slope and friction of bed, compounds the difficulties further. In this paper, a least-squares finite-element method for the space discretization and θ-method for the time integration is developed for the 2D non-conservative SWE including the source terms. Advantages of the method include: the source terms can be approximated easily with interpolation functions, no upwind scheme is needed, as well as the resulting system equations is symmetric and positive-definite, therefore, can be solved efficiently with the conjugate gradient method. The method is applied to steady and unsteady flows, subcritical and transcritical flow over a bump, 1D and 2D circular dam-break, wave past a circular cylinder, as well as wave past a hump. Computed results show good C-property, conservation property and compare well with exact solutions and other numerical results for flows with weak and mild gradient changes, but lead to inaccurate predictions for flows with strong gradient changes and discontinuities.  相似文献   

17.
This paper aims at the development of a new stabilization formulation based on the finite calculus (FIC) scheme for solving the Euler equations using the Galerkin FEM on unstructured triangular grids. The FIC method is based on expressing the balance of fluxes in a space–time domain of finite size. It is used to prevent the creation of instabilities typically present in numerical solutions due to the high convective terms and sharp gradients. Two stabilization terms, respectively called streamline term and transverse term, are added via the FIC formulation to the original conservative equations in the space–time domain. An explicit fourth‐order Runge–Kutta scheme is implemented to advance the solution in time. The presented numerical test examples for inviscid flows prove the ability of the proposed stabilization technique for providing appropriate solutions especially near shock waves. Although the derived methodology delivers precise results with a nearly coarse mesh, a mesh refinement technique is coupled to the solution process for obtaining a suitable mesh particularly in the high‐gradient zones. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
Simulating transient compressible flows involving shock waves presents challenges to the CFD practitioner in terms of the mesh quality required to resolve discontinuities and prevent smearing. This paper discusses a novel two‐dimensional Cartesian anisotropic mesh adaptation technique implemented for transient compressible flow. This technique, originally developed for laminar incompressible flow, is efficient because it refines and coarsens cells using criteria that consider the solution in each of the cardinal directions separately. In this paper, the method will be applied to compressible flow. The procedure shows promise in its ability to deliver good quality solutions while achieving computational savings. Transient shock wave diffraction over a backward step and shock reflection over a forward step are considered as test cases because they demonstrate that the quality of the solution can be maintained as the mesh is refined and coarsened in time. The data structure is explained in relation to the computational mesh, and the object‐oriented design and implementation of the code is presented. Refinement and coarsening algorithms are outlined. Computational savings over uniform and isotropic mesh approaches are shown to be significant. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

19.
Local and parallel finite element algorithms based on two-grid discretization for the time-dependent convection-diffusion equations are presented. These algorithms are motivated by the observation that, for a solution to the convection-diffusion problem, low frequency components can be approximated well by a relatively coarse grid and high frequency components can be computed on a fine grid by some local and parallel proce- dures. Hence, these local and parallel algorithms only involve one small original problem on the coarse mesh and some correction problems on the local fine grid. One technical tool for the analysis is the local a priori estimates that are also obtained. Some numerical examples are given to support our theoretical analvsis.  相似文献   

20.
用拟压缩性方法和Jameson的有限体积算法求解了二维和三维定常可可压Euler方程。分别采用显、隐式时间离散推进求解;分析了人工粘性的阶数对定常解收敛性的影响,应用该方法计算了单个翼型和翼身组合体的低速绕流,结果与实验吻合较好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号