首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Preparation, Spectroscopic Characterization, and Crystal Structures of [(C5H5N)2CH2][PtCl5(SCN)] and cis -[(C5H5N)2CH2][PtCl4(SCN)2] By treatment of [PtCl6]2– with SCN in aqueous solution a mixture of chlorothiocyanatoplatinates(IV) is formed, from which [PtCl5(SCN)]2– and cis-[PtCl4(SCN)2]2– have been separated by ion exchange chromatography on diethylaminoethyl cellulose. X-Ray structure determinations on single crystals of [(C5H5N)2CH2][PtCl5(SCN)] ( 1 ) (tetragonal, space group P 43, a = 7.687(1), c = 29.698(4), Z = 4) and cis-[(C5H5N)2CH2][PtCl4(SCN)2] ( 2 ) (monoclinic, space group P 21/n, a = 11.2467(9), b = 15.0445(10), c = 11.3179(13), β = 92.840(9)°, Z = 4) show, that the thiocyanate groups are coordinated via S atoms with average Pt–S distances of 2.339 Å and Pt–S–C angles of 104.7° up to 107.1°. Using the molecular parameters of the X-ray determinations the low temperature (10 K) IR and Raman spectra have been assigned by normal coordinate analyses. The valence force constants of the S–Pt–Cl˙ axes are fd(PtS) = 1.81 ( 1 ) and 1.87 ( 2 ), fd(PtCl × ) = 1.77 ( 1 ) and 1.81 ( 2 ), of the Cl–Pt–Cl axes are fd(PtCl) = 1.93 ( 1 ) and 1.90 mdyn/Å ( 2 ). The 195Pt NMR spectra from dichlormethane solutions exhibit each one sharp signal at 3975.6 ( 1 ) and 3231.6 ppm ( 2 ), respectively.  相似文献   

2.
Crystal Structures of the Fluorochloroplatinates(IV) cis-[(C5H5N)2CH2][PtF4Cl2], trans-[(C5H5N)2CH2][PtF4Cl2] · H2O, and [(C5H5N)2CH2][PtF5Cl] The complex ions cis-[PtF4Cl2]2?, trans-[PtF4Cl2]2? and [PtF5Cl]2? have been synthesized by stereoselective ligand exchange reactions utilizing the trans effect and are separated by ion exchange chromatography on diethylaminoethyl cellulose. These anions form stable AB-type salts with the doubly charged cation dipyridiniomethane, [(C5H5N)2CH2]2+. X-ray structure determinations on single crystals of cis-[(C5H5N)2CH2][PtF4Cl2] ( 1 ) (monoclinic, space group P21/n with a = 10.379(10), b = 9.635(2), c = 13.738(2) Å, β = 99.142(10)°, Z = 4), trans-[(C5H5N)2CH2][PtF4Cl2] · H2O ( 2 ) (triclinic, space group P1 with a = 7.757(4), b = 10.059(7), c = 10.408(6) Å, α = 82.49(5), β = 68.92(4), γ = 75.46(4)°, Z = 2) and [(C5H5N)2CH2][PtF5Cl] ( 3 ) (orthorhombic, space group Pnma with a = 10.394(3), b = 13.320(2), c = 9.2694(10) Å, Z = 4), reveal the perfect ordering of the anion sublattice. The stronger trans influence of Cl compared with F is observed in asymmetric axes $ {\rm F}^ \bullet $? Pt? Cl′. The bond lengths Pt? $ {\rm F}^ \bullet $ are 0.026 Å (1.4%) longer and the Pt? Cl′ distances are 0.078 Å (3,3%) shorter in comparison with those of symmetrically coordinated axes. The weakening of the Pt? $ {\rm F}^ \bullet $ bond and the strengthening of the Pt? Cl′ bond is better recognizable from shifts of the stretching vibrations by 8% to lower and by 13% to higher frequencies, respectively. Correspondingly, the valence force constants are found to be 15% lower and 22% higher. The trans influence is observed most distinctly in the 19F-nmr spectra exhibiting the coupling constant 1J($ {\rm F}^ \bullet $Pt) to be 29% smaller than 1J(FPt).  相似文献   

3.
The complexes [Pt(tBu3tpy){C?C(C6H4C?C)n?1R}]+ (n=1: R=alkyl and aryl (Ar); n=1–3: R=phenyl (Ph) or Ph‐N(CH3)2‐4; n=1 and 2, R=Ph‐NH2‐4; tBu3tpy=4,4’,4’’‐tri‐tert‐butyl‐2,2’:6’,2’’‐terpyridine) and [Pt(Cl3tpy)(C?CR)]+ (R=tert‐butyl (tBu), Ph, 9,9’‐dibutylfluorene, 9,9’‐dibutyl‐7‐dimethyl‐amine‐fluorene; Cl3tpy=4,4’,4’’‐trichloro‐2,2’:6’,2’’‐terpyridine) were prepared. The effects of substituent(s) on the terpyridine (tpy) and acetylide ligands and chain length of arylacetylide ligands on the absorption and emission spectra were examined. Resonance Raman (RR) spectra of [Pt(tBu3tpy)(C?CR)]+ (R=n‐butyl, Ph, and C6H4‐OCH3‐4) obtained in acetonitrile at 298 K reveal that the structural distortion of the C?C bond in the electronic excited state obtained by 502.9 nm excitation is substantially larger than that obtained by 416 nm excitation. Density functional theory (DFT) and time‐dependent DFT (TDDFT) calculations on [Pt(H3tpy)(C?CR)]+ (R= n‐propyl (nPr), 2‐pyridyl (Py)), [Pt(H3tpy){C?C(C6H4C?C)n?1Ph}]+ (n=1–3), and [Pt(H3tpy){C?C(C6H4C?C)n?1C6H4‐N(CH3)2‐4}]+/+H+ (n=1–3; H3tpy=nonsubstituted terpyridine) at two different conformations were performed, namely, with the phenyl rings of the arylacetylide ligands coplanar (“cop”) with and perpendicular (“per”) to the H3tpy ligand. Combining the experimental data and calculated results, the two lowest energy absorption peak maxima, λ1 and λ2, of [Pt(Y3tpy)(C?CR)]+ (Y=tBu or Cl, R=aryl) are attributed to 1[π(C?CR)→π*(Y3tpy)] in the “cop” conformation and mixed 1[dπ(Pt)→π*(Y3tpy)]/1[π(C?CR)→π*(Y3tpy)] transitions in the “per” conformation. The lowest energy absorption peak λ1 for [Pt(tBu3tpy){C?C(C6H4C?C)n?1C6H4‐H‐4}]+ (n=1–3) shows a redshift with increasing chain length. However, for [Pt(tBu3tpy){C?C(C6H4C?C)n?1C6H4‐N(CH3)2‐4}]+ (n=1–3), λ1 shows a blueshift with increasing chain length n, but shows a redshift after the addition of acid. The emissions of [Pt(Y3tpy)(C?CR)]+ (Y=tBu or Cl) at 524–642 nm measured in dichloromethane at 298 K are assigned to the 3[π(C?CAr)→π*(Y3tpy)] excited states and mixed 3[dπ(Pt)→π*(Y3tpy)]/3[π(C?C)→π*(Y3tpy)] excited states for R=aryl and alkyl groups, respectively. [Pt(tBu3tpy){C?C(C6H4C?C)n?1C6H4‐N(CH3)2‐4}]+ (n=1 and 2) are nonemissive, and this is attributed to the small energy gap between the singlet ground state (S0) and the lowest triplet excited state (T1).  相似文献   

4.
In the ion/molecule reactions of the cyclometalated platinum complexes [Pt(L? H)]+ (L=2,2′‐bipyridine (bipy), 2‐phenylpyridine (phpy), and 7,8‐benzoquinoline (bq)) with linear and branched alkanes CnH2n+2 (n=2–4), the main reaction channels correspond to the eliminations of dihydrogen and the respective alkenes in varying ratios. For all three couples [Pt(L? H)]+/C2H6, loss of C2H4 dominates clearly over H2 elimination; however, the mechanisms significantly differs for the reactions of the “rollover”‐cyclometalated bipy complex and the classically cyclometalated phpy and bq complexes. While double hydrogen‐atom transfer from C2H6 to [Pt(bipy? H)]+, followed by ring rotation, gives rise to the formation of [Pt(H)(bipy)]+, for the phpy and bq complexes [Pt(L? H)]+, the cyclometalated motif is conserved; rather, according to DFT calculations, formation of [Pt(L? H)(H2)]+ as the ionic product accounts for C2H4 liberation. In the latter process, [Pt(L? H)(H2)(C2H4)]+ (that carries H2 trans to the nitrogen atom of the heterocyclic ligand) serves, according to DFT calculation, as a precursor from which, due to the electronic peculiarities of the cyclometalated ligand, C2H4 rather than H2 is ejected. For both product‐ion types, [Pt(H)(bipy)]+ and [Pt(L? H)(H2)]+ (L=phpy, bq), H2 loss to close a catalytic dehydrogenation cycle is feasible. In the reactions of [Pt(bipy? H)]+ with the higher alkanes CnH2n+2 (n=3, 4), H2 elimination dominates over alkene formation; most probably, this observation is a consequence of the generation of allyl complexes, such as [Pt(C3H5)(bipy)]+. In the reactions of [Pt(L? H)]+ (L=phpy, bq) with propane and n‐butane, the losses of the alkenes and dihydrogen are of comparable intensities. While in the reactions of “rollover”‐cyclometalated [Pt(bipy? H)]+ with CnH2n+2 (n=2–4) less than 15 % of the generated product ions are formed by C? C bond‐cleavage processes, this value is about 60 % for the reaction with neo‐pentane. The result that C? C bond cleavage gains in importance for this substrate is a consequence of the fact that 1,2‐elimination of two hydrogen atoms is no option; this observation may suggest that in the reactions with the smaller alkanes, 1,1‐ and 1,3‐elimination pathways are only of minor importance.  相似文献   

5.
The bidentate diphosphine ligand, 3,3′-oxybis[(dipenylphosphino)methylbenzene] ( 1 ) forms monomeric, trans-square-planar complexes MX2( 1 ) (M = Ni, Pd, Pt; X = Cl?, Br? I?, and, in part, N, NCS?, CN?, NO) as well as Pt(H)Cl( 1 ), Pt(H)Br( 1 ), and RhCl(CO)( 1 ). Polymeric species have been observed with substitutionally inert metal centres: trans-[PtCl2( 1 )]2 and cis-[PtCl2( 1 )]n (mean value of n ≈ 4–5) 31P-NMR, and selected IR and UV/VIS parameters are reported. Ligand 1 shows a marked preference for trans-spanning and monomeric chelate formation, despite its various degrees of freedom of internal rotation in the lignad backbone. The readily available ligand 1 as well as analogues with other donor atoms, therefore, appear useful in most potential applications of trans-spanning chelate ligands. The crystal structure of AgCl( 1 )·0.5 (CH3)2C?O·0.39 C6H12 (space group C2/c,a = 21.02 Å, b = 14.57 Å, c = 24.79 Å, β = 99.77°, V = 7531.4 Å3, Z = 8) confirms the presence of three-coordinate Ag( I ), with a coordination intermediate between a trigonal-planar and a T-shaped geometry (P-Ag-P = 145.61(8)°).  相似文献   

6.
The bissilyl complexes 3 – 6 were synthesized by reactions of the platinum(0) complexes [Pt(η2‐C2H4)(diphos)] ( 1 : diphos = dppe; 2 : diphos = dcpe) with the disilanes 1, 1,2, 2‐tetramethyldisilane and 1, 1,2, 2‐tetraphenyldisilane via Si–Si bond activation. The molecular structures of 4 and 5 in the solid state are reported. The reaction of 2 with HPh2SiSiPh2H led to the immediate formation of the hydrido disilanyl complex [Pt(H)(SiPh2SiPh2H)(dcpe)] ( 7 ), which converts slowly into the bissilyl complex [Pt(SiHPh2)2(dcpe)] ( 6 ). The latter was reported before to be a η2‐disilene complex.  相似文献   

7.
Complexes of the type [Pt R2 (dppma-PP′)] (R─Me, Et, Ph, CH2Ph, C6H4 Me-p, C6H4OMe-2, CH2CMe3, 1-naphthyl, C6H4Me-o, dppma = Ph2PNMe PPh2) have been prepared from [PtCl2, (dppma-PP′)] and the corresponding alkyl-lithium or Grignard reagents. Equilibrium constants, k, for the conversion of [PtR2 (dppma-PP′)] into cis-[PtR2(dppma-P)2] with dppma were studied using 31P NMR spectroscopy at room temperature. Equilibrium is rapidly established for R─C6H4-Me-o, at 20°C. Complex of the type cis-[PtR2 (dppma-P)2] was isolated R─C6H4 Me-o. The complexes [PtMe2(dppma-P)2] and [Pt(o-methoxyphenyl)2(dppma-P)2] were prepared, but unfortunately decomposed once isolated, the only evidence for its formation being from 31P-{1H} NMZR spectroscopy. The o-tolyl or 1-naphthyl complexes exist as syn-anti mixtures in solution, due to restricted rotation around the platinum aryl bonds. Treatment of several complexes of the type [PtR2(dppma-PP′)] with MeI gives [PtR2Me(I)(dppma-PP′)] with trans addition of MeI. Treatment of [PtR2(dppma-PP′)] with HCl gives [Pt Cl (R) (dppma-PP′)] for R─C6H2Me3-2,4,6, C6H4-CH3-2, C6H4-Me-4, Me, 1-naphthyl. The 1H, 31P NMR parameters for these complexes are discussed. Attempted preparation of complexes of the type [PtR2 (dppma-P)2M] (R─C6H4-Me-2, Me CN-C6H4-Me-4); M─Pd, Pt, Au,) are reported.  相似文献   

8.
In a combined experimental/computational investigation, the gas‐phase behavior of cationic [Pt(bipy)(CH3)((CH3)2S)]+ ( 1 ) (bipy=2,2′‐bipyridine) has been explored. Losses of CH4 and (CH3)2S from 1 result in the formation of a cyclometalated 2,2′‐bipyrid‐3‐yl species [Pt(bipy?H)]+ ( 2 ). As to the mechanisms of ligand evaporation, detailed labeling experiments complemented by DFT‐based computations reveal that the reaction follows the mechanistically intriguing “roll‐over” cyclometalation path in the course of which a hydrogen atom from the C(3)‐position is combined with the Pt‐bound methyl group to produce CH4. Activation of a C? H‐bond of the (CH3)2S ligand occurs as well, but is less favored (35 % versus 65 %) as compared to the C(3)? H bond activation of bipy. In addition, the thermal ion/molecule reactions of [Pt(bipy?H)]+ with (CH3)2S have been examined, and for the major pathway, that is, the dehydrogenative coupling of the two methyl groups to form C2H4, a mechanism is suggested that is compatible with the experimental and computational findings. A hallmark of the gas‐phase chemistry of [Pt(bipy?H)]+ with the incoming (CH3)2S ligand is the exchange of one (and only one) hydrogen atom of the bipy fragment with the C? H bonds of dimethylsulfide in a reversible “roll‐over” cyclometalation reaction. The PtII‐mediated conversion of (CH3)2S to C2H4 may serve as a model to obtain mechanistic insight in the dehydrosulfurization of sulfur‐containing hydrocarbons.  相似文献   

9.
The structural and spectral data have been obtained by ab initio methods for the [(OH)4Pt(μ-O2)(μ- OH)Pt(OH)4]2?, [(OH)4Pt(μ-O2)(μ-OH)Pt(OH)4(OH)]3?, [(OH)5Pt(μ-O2)Pt(OH)5]3?, and [(H2O)(OH)4Pt(μ- O2)Pt(OH)4(H2O)]- clusters, corresponding to binuclear platinum(IV) superoxo complexes with one and two bridges. The data obtained are in good agreement with experimental data and make it possible to judge the structure of available complexes.  相似文献   

10.
Synthesis and Structure of the Platinum(0) Compounds [(dipb)Pt]2(COD) and (dipb)3Pt2 and of the Cluster Hg6[Pt(dipb)]4 (dipb = (i-Pr)2P(CH2)4P(i-Pr)2) The reduction of (dipb)PtCl2 with Na/Hg yields (dipb)Pt as an intermediate which reacts with the amalgam to form the cluster Hg6[Pt(dipb)]4 ( 3 ) or decomposes to (dipb)3Pt2 ( 2 ) and Pt. In the presence of COD [(dipb)Pt]2(COD) ( 1 ) is obtained. 1 crystallizes monoclinicly in the space group P21/c with a = 1596.1(4), b = 996.5(2), c = 1550.4(3) pm, β = 113.65(2)°, Z = 2. In the dinuclear complex two (dipb)Pt units are bridged by a 1,2-η2-5,6-η2 bonded COD ligand. Whereby the C = C double bonds are lengthened to 145 pm. 2 forms triclinic crystals with the space group P1 and a = 1002.0(2), b = 1635.9(3), c = 868.2(2) pm, α = 94.70(2)°, β = 94.45(2)°, σ = 87.95(1)°, Z = 1. In 2 two (dipb)Pt moieties are connected by a μ-dipb ligand in a centrosymmetrical arrangement. 3 is monoclinic with the space group C2/c and a = 1273.8(3), b = 4869.2(6), c = 1660.2(3) pm, β = 95.16(2)°, Z = 4. The clusters Hg6[Pt(dipb)]4 have the symmetry C2. Central unit is a Hg6 octahedron of which four faces are occupied by Pt(dipb) groups. The bonding in the cluster is discussed on the basis of eight Pt? Hg two center bonds of 267.6 pm and two Pt? Hg? Pt three center bonds with Pt? Hg = 288.0 pm.  相似文献   

11.
Tri(1‐cyclohepta‐2, 4, 6‐trienyl)phosphane, P(C7H7)3 ([P] when coordinated to a metal atom), was used to stabilize complexes of platinum(II) and palladium(II) with chelating dichalcogenolato ligands as [P]M(E∩E) [E = S, ∩ = CH2CH2, M = Pt ( 3a ); E = S, ∩ = 1, 2‐C6H4, M = Pt ( 5a ), Pd ( 6a ); E = S, ∩ = C(O)C(O), M = Pt ( 7a ), Pd ( 8a ); E = S, Se, ∩ = 1, 2‐C2(B10H10), M = Pt ( 9a, 9b ), Pd ( 10a, 10b ); E = S, ∩ = Fe2(CO)6, M = Pt ( 11a ), Pd ( 12a )]. Starting materials in all reactions were [P]MCl2 with M = Pt ( 1 ) and Pd ( 2 ). Attempts at the synthesis of [P]M(ER)2 with non‐chelating chalcogenolato ligands were not successful. All new complexes were characterized by multinuclear magnetic resonance spectroscopy in solution (1H, 13C, 31P, 77Se and 195Pt NMR), and the molecular structures of 5a and 12a were determined by X‐ray analysis. Both in the solid state and in solution the ligand [P] is linked to the metal atom by the P‐M bond and by η2‐C=C coordination of the central C=C bond of one of the C7H7 rings. In solution, intramolecular exchange between coordinated and non‐coordinated C7H7 rings is observed, the exchange process being markedly faster in the case of M = Pd than for M = Pt.  相似文献   

12.
An aryldimethylalane‐appended analogue of 1,1′‐bis(diphenylphosphino)ferrocene, FcPPAl, was prepared, and reaction with [Pt(nb)3] (nb=norbornene) afforded [Pt(η2‐nb)(FcPPAl)] ( 1 ). Heating a solution of 1 to 80 °C resulted in crystallization of [{Pt(FcPPAl)}2] ( 2 ), whereas treatment of 1 with C2H4, C2Ph2, H2, or CO provided [PtL(FcPPAl)] [L=C2H4 ( 3 ), C2Ph2 ( 4 )], [PtH2(FcPPAl)] ( 5 ), and [Pt(CO)(FcPPAl)] ( 6 ). In all complexes, the FcPPAl ligand is coordinated through both phosphines and the alane. Whereas 2 adopts a T‐shaped geometry at platinum, 3 – 5 are square‐pyramidal, and 6 is distorted square‐planar. The hydride and carbonyl complexes feature unusual multicenter bonding involving platinum, aluminum, and a hydride or carbonyl ligand.  相似文献   

13.
The ligand 2,11-bis(diphenylphosphinomethyl)benzo[c]phenanthrene ( 1 ) has been used to prepare complexes of the type [PtL( 1 )] (L ? C2H4, CH2?CH? CO2Me, PhC?CPh, MeC?CMe, MeO2CC?CCO2Me, (i-Pr)O2CC?CCO2(i-Pr), Ph3P and CO). It is shown that these complexes are less labile than the corresponding species [PtL(Ph3P)2]. The preparation of complexes trans-[PtX(R)(1)] by oxidative addition of RX (RX ? PhCH2Br and Mel) to [Pt(C2H4)(1)] is described. The isolation of [PtO2(CH3)2CO(1)] is also reported.  相似文献   

14.
New Benzyl Complexes of the Lanthanides. Synthesis and Crystal Structures of [(C5Me5)2Y(CH2C6H5)(thf)], [(C5Me5)2Sm(CH2C6H5)2K(thf)2], and [(C5Me5)Gd(CH2C6H5)2(thf)] YBr3 reacts with potassium benzyl and [K(C5Me5)] in THF to give KBr and the monobenzyl compound [(C5Me5)2 · Y(CH2C6H5)(thf)] 1 . The analogous reaction with SmBr3 in THF leads to the polymeric product [(C5Me5)2Sm(CH2C6H5)2 ∞ K(thf)2] 2 , with GdBr3 to [(C5Me5)Gd(CH2C6H5)2(thf)] 3 . The structures of 1–3 were determined by X-ray single crystal structure analysis:
  • Space group P1 , Z = 2, a = 851.2(4) pm, b = 952.7(4) pm, c = 1858.6(8) pm, α = 79.90(4)°, β = 77.35(4)°, γ = 73.30(3)°.
  • Space group P1 , Z = 2, a = 903.3(2) pm, b = 1375.9(3) pm, c = 1801.1(4) pm, α = 100.92(3)°, β = 100.77°, γ = 98.25(3)°.
  • Space group P21/n, Z = 8, a = 1458.2(5) pm, b = 927.8(3) pm, c = 3792.9(15) pm, β = 96.83(3)°.
  相似文献   

15.
The synthesis and characterization of cobalt(II), nickel(II) and copper(II) perchlorate complexes containing bis [(diphenylphosphinyl)methyl] [phenylphosphine oxide (RPPH), bis [(diphenylphosphinyl)methyl] ethyl phosphinate (RPOEt), and bis [(diphenylphosphinyl)methyl] phosphinic acid (RPOH) have been studied. The substituent at the central phosphorus atom of the ligand is responsible for the types of complexes formed. The new complexes [M(RPPh)2(ClO4)2.nH2O, [M(RPPh)3](ClO4)2.4H2O, [M(RPOEt)2](ClO4)2.2H2O, and [M(RPOH)3] (ClO4)2.nH2O are characterized as high spin and most of them have an octahedral or distorted octahedral geometry [M = Co(II), Ni(II), or Cu(II); n = 2?5]. The coordination of two P = O groups from one ligand to the metal has been proposed for most of the complexes formed. The coordination of all three P = O groups has been assumed for complexes [M(RPPh)2](ClO4)2.nH2O and [M(RPOEt)2](ClO4)2.2H2O.  相似文献   

16.
The optical and biological properties of 2-(4-dimethylaminophenyl)benzothiazole cycloplatinated complexes featuring bioactive ligands ([{Pt(Me2N-pbt)(C6F5)}L] [L=Me2N-pbtH 1 , p-dpbH (4-(diphenylphosphino)benzoic acid) 2 , o-dpbH (2-(diphenylphosphino)benzoic acid) 3 ), [Pt(Me2N-pbt)(o-dpb)] 4 , [{Pt(Me2N-pbt)(C6F5)}2(μ-PRnP)] [PR4P=O(CH2CH2OC(O)C6H4PPh2)2 5 , PR12P=O{(CH2CH2O)3C(O)C6H4PPh2}2 6 ] are presented. Complexes 1 – 6 display 1ILCT and metal-perturbed 3ILCT dual emissions. The ratio between both bands is excitation dependent, accomplishing warm-white emissions for 2 , 5 and 6 . The phosphorescent emission is lost in aerated solutions owing to photoinduced electron transfer to 3O2 and the formation of 1O2, as confirmed in complexes 2 and 4 . They also exhibit photoinduced phosphorescence enhancement in non-degassed DMSO due to local oxidation of DMSO by sensitized 1O2, which causes a local degassing. Me2N-pbtH and the complexes specifically accumulate in the Golgi apparatus, although only 2 , 3 and 6 were active against A549 and HeLa cancer cell lines, 6 being highly selective in respect to nontumoral cells. The potential photodynamic property of these complexes was demonstrated with complex 4 .  相似文献   

17.
Crystal Structures, Vibrational Spectra, and Normal Coordinate Analyses of the Stereoisomeric Trifluorotrichloroplatinates(IV), fac-[(C5H5N)2CH2][PtF3Cl3] · 0.5(CH3)2CO and mer-[(C5H5N)2CH2][PtF3Cl3] The geometric isomers fac- und mer-[PtF3Cl3]2? have been isolated by ion exchange chromatography on diethylaminoethyl cellulose. The doubly charged complex anions form stable AB-type salts with the dication dipyridiniomethane, [(C5H5N)2CH2]2+. The X-ray structure determination on single crystals of fac-[(C5H5N)2CH2][PtF3Cl3] · 0,5(CH3)2CO ( 1 ) (triclinic, space group P1 with a = 8.468(3), b = 8.847(2), c = 12.1260(10) Å, α = 79.986(12), β = 79.009(12), γ = 69.20(3)°, Z = 2) and mer-[(C5H5N)2CH2][PtF3Cl3] ( 2 ) (monoclinic, space group P21/n with a = 9.620(2), b = 14.031(4), c = 10.435(3) Å, β = 97.54(2)°, Z = 4) reveals the perfect ordering of the anion sublattice. Due to the stronger trans influence of Cl compared to F in asymmetric axes $ {\rm F}^. $? Pt? Cl′ the Pt? $ {\rm F}^. $ distance is lengthened by 1.8%, the Pt? Cl′ distance is shortened by 1.2% in comparison with symmetrically coordinated axes. Correspondingly, the vibrational spectra exhibit shifts of the Pt$ {\rm F}^. $ streching vibrations by 8% to lower, and of the PtCl′ streching vibrations by 12% to higher frequencies. Normal coordinate analyses performed on the basis of the X-ray data result in valence force constants for weakened Pt? $ {\rm F}^. $ bonds to be 14% lower, for the strengthened Pt? Cl′ bonds to be 20% higher than in symmetric axes, respectively. Generally the trans influence in fluorochloroplatinates(IV) on the bond lengths is very low with 1–2%, it results in considerable shifts of the stretching vibrations by 8–12% and reveals the strongest effect on the valence force constants with 14–20%.  相似文献   

18.
Dimeric chlorobridge complex [Rh(CO)2Cl]2 reacts with two equivalents of a series of unsymmetrical phosphine–phosphine monoselenide ligands, Ph2P(CH2)nP(Se)Ph2 {n = 1( a ), 2( b ), 3( c ), 4( d )}to form chelate complex [Rh(CO)Cl(P∩Se)] ( 1a ) {P∩Se = η2‐(P,Se) coordinated} and non‐chelate complexes [Rh(CO)2Cl(P~Se)] ( 1b–d ) {P~Se = η1‐(P) coordinated}. The complexes 1 undergo oxidative addition reactions with different electrophiles such as CH3I, C2H5I, C6H5CH2Cl and I2 to produce Rh(III) complexes of the type [Rh(COR)ClX(P∩Se)] {where R = ? C2H5 ( 2a ), X = I; R = ? CH2C6H5 ( 3a ), X = Cl}, [Rh(CO)ClI2(P∩Se)] ( 4a ), [Rh(CO)(COCH3)ClI(P~Se)] ( 5b–d ), [Rh(CO)(COH5)ClI‐(P~Se)] ( 6b–d ), [Rh(CO)(COCH2C6H5)Cl2(P~Se)] ( 7b–d ) and [Rh(CO)ClI2(P~Se)] ( 8b–d ). The kinetic study of the oxidative addition (OA) reactions of the complexes 1 with CH3I and C2H5I reveals a single stage kinetics. The rate of OA of the complexes varies with the length of the ligand backbone and follows the order 1a > 1b > 1c > 1d . The CH3I reacts with the different complexes at a rate 10–100 times faster than the C2H5I. The catalytic activity of complexes 1b–d for carbonylation of methanol is evaluated and a higher turnover number (TON) is obtained compared with that of the well‐known commercial species [Rh(CO)2I2]?. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

19.
The reactions of AuIII, PtII and PdII complexes with 2-pyridinecarboxaldehyde (2CHO-py) have been examined in protic (H2O, MeOH, EtOH) and aprotic (DMF, CH2Cl2) solvents. Compounds in which the pyridine ligand is N-coordinated, either in the original aldehydic form or in a new form derived from addition of one or two protic molecules, have been isolated, namely: [Au(2CHO-py · H2O)Cl3], [Au(2CHO-py · MeOH)Cl3], [Au(2CHO-py · 2EtOH)Cl3], cis-[Pt(2CHO-py)2Cl2], trans-[Pd(2CHO-py)2Cl2], trans-[Pt(dmso)(2CHO-py)Cl2], [Pt{C5H4N-(CH2SMe)}Cl(2CHO-py)](ClO4), [Pt(terpy)(2CHOpy)](ClO4)2, [Pt(terpy)(2CHO-py · H2O)](ClO4)2 (terpy = 2,2′:6′,2′′-terpyridine). 1H-n.m.r. experiments show that the addition of the protic molecule(s) to the PtII and PdII complexes is reversible. The effects of the nature of the metal ion and the ancillary ligands as well as of the total charge of the complexes on the relative stability of the addition products are discussed. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

20.
Synthesis and Crystal Structure of the Nitrido Complexes [(n‐Bu)4N]2[{(L)Cl4Re≡N}2PtCl2] (L = THF und H2O) and [(n‐Bu)4N]2[(H2O)Cl4Re≡N‐PtCl(μ‐Cl)]2 The threenuclear complex [(n‐Bu)4N]2[{(THF)Cl4Re≡N}2—PtCl2] ( 1a ) is obtained by the reaction of [(n‐Bu)4N][ReNCl4] with [PtCl2(C6H5CN)2] in THF/CH2Cl2. It forms red crystals with the composition 1a · 2 CH2Cl2 crystallizing in the tetragonal space group I41/a with a = 3186.7(2); c = 1311.2(1) pm and Z = 8. If the reaction of the educts is carried out without THF, however under exposure to air the compound [(n‐Bu)4N]2[{(H2O)Cl4Re≡N}2PtCl2] ( 1b ) is obtained as red trigonal crystals with the space group R3 and a = 3628.3(3), c = 1231.4(1) pm and Z = 9. In the centrosymmetric complex anions [{(L)Cl4Re≡N}2PtCl2]2— a linear PtCl2moiety is connected in a trans arrangement with two complex fragments [(L)Cl4Re≡N] via asymmetric nitrido bridges Re≡dqN‐Pt. For PtII such results a square‐planar coordination PtCl2N2. The linear nitrido bridges are characterized by distances Re‐N = 169.5 pm and Pt‐N = 188.8 pm ( 1a ), respectively, Re‐N = 165.6 pm and Pt‐N = 194.1 pm ( 1b ). By the reaction of [(n‐Bu)4N][ReNCl4] with PtCl4 in CH2Cl2 platinum is reduced forming the heterometallic ReVI/PtII complex, [(n‐Bu)4N]2[(H2O)Cl4Re≡N‐PtCl(μ‐Cl)]2 ( 2 ). It crystallizes in the monoclinic space group C2/c with a = 2012.9(1); b = 1109.0(2); c = 2687.4(4) pm; β = 111.65(1)° and Z = 4. In the central unit ClPt(μ‐Cl)2PtCl of the anionic complex [(H2O)Cl4Re≡N‐PtCl(μ‐Cl)]22— with the symmetry C2 the coordination of the Pt atoms is completed by two nitrido bridges Re≡N‐Pt to nitrido complex fragments [(H2O)Cl4Re≡N] forming a square‐planar arrangement for the Pt atoms. The distances in the linear nitrido bridges are Re‐N = 165.9 pm and Pt‐N = 190.1 pm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号