首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The fluorescence response of the dansyl chromophore has been used to study the kinetic of epoxy curing processes. With this new method, comparison between the curing at the interface of a glass fiber/epoxy and in the epoxy bulk of a composite material was studied. The effect of two glass fiber surface treatments was investigated. Commercial E-glass fibers were surface coated with 3-aminopropyltriethoxysilane (APTES) and 3-aminopropylmethyldiethoxysilane (APDES). Fluorimetry (using fluorescent labels) and FT-NIR (Fourier transformed infrared spectroscopy in the near range) techniques were used to monitor the curing process in these composite materials. From the analysis of the data obtained, different simple kinetic models were discussed and apparent activation energies were obtained. Furthermore, from those techniques the respective results were compared to obtain complementary information. Independently of the sample and the technique used for the kinetic analysis, no variation of the activation energy of the epoxy curing reaction was found, which suggests that there are no changes in the mechanism of the reaction along the process. Fluorescence from dansyl located at the glass fiber/epoxy interface reflected that the kind of reinforcement treatment clearly affects the epoxy curing process exactly in that region. However, when analytical response comes from the whole system the mechanism of the reaction does not seem to change with the silane coating used although is quite different in comparison with the process at the interface.  相似文献   

2.
Tryptophan, an amino acid, has been used as a novel, environmentally friendly curing agent instead of toxic curing agents to crosslink the diglycidyl ether of bisphenol A (DGEBA) epoxy resin. The curing reaction of tryptophan/DGEBA mixtures of different ratios and the effect of the imidazole catalyst on the reaction have been evaluated. The optimum reaction ratio of DGEBA to tryptophan has been determined to be 3:1 with 1 wt % catalyst, and the curing mechanism of the novel reaction system has been studied and elucidated. In situ Fourier transform infrared spectra indicate that with the extraction of a hydrogen from NH3+ in zwitterions from tryptophan, the formed nucleophilic primary amine and carboxylate anions of the tryptophan can readily participate in the ring‐opening reaction with epoxy. The secondary amine, formed from the primary amine, can further participate in the ring‐opening reaction with epoxy and form the crosslinked network. The crosslinked structure exhibits a reasonably high glass‐transition temperature and thermal stability. A catalyst‐initiated chain reaction mechanism is proposed for the curing reaction of the epoxy with zwitterion amino acid hardeners. The replacement of toxic curing agents with this novel, environmentally friendly curing agent is an important step toward a next‐generation green electronics industry. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 181–190, 2007  相似文献   

3.
Mesoscale molecular dynamics simulations are performed to analyze the curing process of an epoxy resin with polyfunctional amines on a generic surface. The coarse grained potentials were derived from all-atomistic molecular dynamics simulations using iterative Boltzmann inversion. The reactive scheme incorporates cross-linking between an epoxy resin and an amine, as well as amine adsorption on the surface. The structure of the cured network is examined and compared with equilibrium properties of the uncured system. Special attention has been paid on the implications of the surface that is believed to play a crucial role in the performance of epoxy systems.  相似文献   

4.
The epoxy coating on copper wire has been studied by a modified sampling technique using Fourier transform infrared (FTIR) diffuse reflectance attachment. As the wire axis was parallel to the incident plane, a reflection spectrum of thin layer coating on a copper wire can be obtained. The study found that imidszole, especially the acetic acid treated imidazole, can be used as an effective curing catalyst of the epoxy resin on copper. This is the first report about the IR study of coatings on metal wires.  相似文献   

5.
The copolymerizations of anhydride-cured epoxy resin on fiberglass surfaces treated with a N-methylaminopropyltrimethoxysilane coupling agent has been investigated using Fourier-transform infrared spectroscopy. The structure of the interface of the silane and the resin in fiber-reinforced composites is composed of copolymers of the epoxy resin with the organofunctionality of the deposited silanes. The number of interfacial bonds formed depends on the amount of silane coupling agent deposited on the fiberglass and the reaction conditions. The silane induces additional esterification and increases the curing density of the epoxy matrix near the fiber surface by about 5–10% relative to the bulk resin.  相似文献   

6.
分析了环氧树脂电子束辐射固化的物理特征 ,电子束辐射固化过程受活性中心扩散控制 ,整个固化区域由片层状结构组成 .与电子能量沉积分布相对应 ,环氧树脂辐射固化度的最高值是在一定深度而不是在辐射表面出现 .对电子束辐射环氧树脂体系的固化过程进行了模型解释 ,固化区域大小主要由电子的能量传递范围和浓度决定 ,反应活性中心的扩散作用影响较弱  相似文献   

7.
In the present study, the synergistic effect of hybrid boron nitride (BN) with graphene on the thermal conductivity of epoxy adhesives has been reported. Graphene was prepared by chemical reduction of graphite oxide (GO) in a mixture of concentrated H2SO4/H3PO4 acid. The particle size distribution of GO was found to be ~10 μm and a low contact angle of 54° with water indicated a hydrophilic surface. The structure of prepared graphene was characterized by Fourier transform infrared (FTIR), X‐ray diffraction (XRD), Raman spectroscopy and atomic force microscopy (AFM). The thermal conductivity of adhesives was measured using guarded hot plate technique. Test results indicated an improvement in the thermal conductivity up to 1.65 W/mK, which was about ninefold increase over pristine epoxy. Mechanical properties of different epoxy formulations were also measured employing lap shear test. The surface characterization of different epoxy adhesive systems was characterized through XRD, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) studies. Fourier transform infrared also served to determine the nature of interactions between filler particles and epoxy resin. Non‐isothermal differential scanning calorimetric (DSC) technique was used to investigate the effects of graphene and BN particles on the cure kinetics and cross‐linking reaction of epoxy cured with amine curing agent. The Kissinger equation, the model‐free isoconversional Flynn–Wall–Ozawa method and the Ozawa model were used to analyze the kinetic parameter. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

8.
李丹  苏晓声  张驰 《应用化学》2015,32(11):1275-1282
利用原位红外加热炉模拟双氰胺固化环氧树脂体系的固化反应过程,实时测试并记录反应过程中官能团结构的变化;将一维红外光谱和二维红外光谱相结合进行分析,给出固化过程中各官能团的变化顺序和趋势。 在双氰胺固化环氧树脂体系中,双氰胺首先分解成氰基胺,然后再和环氧树脂发生开环加成反应,生成亚胺结构,通过重排生成酰胺结构。 双氰胺分解为氰基胺的反应是可逆反应。 将原位红外、一维红外与二维红外三者结合是阐明热固性树脂固化反应机理的非常有效的手段。  相似文献   

9.
The influence of experimental cure parameters on the diffusion of reactive species in polyester–melamine thermoset coatings during curing has been investigated with X‐ray photoelectron spectroscopy and attenuated total reflectance Fourier transform infrared. The diffusion of melamine plays a vital role in the curing process and, therefore, in the ultimate properties of coatings. At a low (<20%) hexamethoxymethylmelamine (HMMM) crosslinker concentration, the matrix composition is uniform, but at high HMMM concentrations, excess HMMM rapidly segregates to the air–coating interface. The rate of migration is governed by the difference in the surface free energies of polyester and HMMM and the concentration gradient of HMMM between the bulk and the surface. An increased rate of energy absorption also increases the rate of migration of HMMM to the surface. A physical model has been proposed to explain this surface segregation phenomenon in terms of cocondensation and self‐condensation reactions. It suggests that an appropriate amount of melamine can be segregated on the surface and allowed to self‐condense to form a desired thickness of a melamine topcoat through the control of the binder composition and cure conditions. This technique can be implemented to apply a melamine topcoat during cure. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 83–91, 2004  相似文献   

10.
A novel kind of cyanate ester (CE)/epoxy resin microspheres have been synthesized using the polymerization technology of cyanate ester and epoxy resin in anhydrous ethanol media; surfactant sodium dodecylbenzene sulfonate was used as an emulsifier, and imidazole was used as catalyst or curing agent. The morphologies, chemical structures, and thermal properties of microspheres were investigated by Fourier transform infrared spectroscopy, scanning electron microscope, laser scanning confocal fluorescence microscopy, optical microscope, differential scanning calorimeter, and thermogravimetric analyzer, respectively. The effects of process parameters such as the amount of imidazole and the weight ratio of epoxy resin to CE on the size and morphology of microsphere were discussed. Results indicate that the reactivity and surface morphology of microsphere can be adjusted by the amount of imidazole and the weight ratio of epoxy resin to CE. The prepared microsphere shows excellent thermal stability and good reactivity.  相似文献   

11.
Perfluorobutenyloxyphthalic anhydride (PFPA) has been synthesized as a new curing agent for epoxy resins, and the properties of epoxy resin cured with PFPA have been investigated. Good PFPA synthesis yields were realized by a dehydrating ring closure of perfluorobutenyloxyphthalic acid, which was obtained through the reaction of hexafluoropropene trimers with 4-hydroxyphthalic acid. Epoxy resin cured with PFPA was found to have several excellent properties. Its boilding water absorption was 0.45%, which is about a one-fourth that for conventionally cured epoxy resin. Its heat resistance was excellent, and its critical surface tension was almost the same as for PTFE.  相似文献   

12.
The curing reaction of an epoxy system consisting of a diglycidyl ether of bisphenol A (BADGE, n = 0) and isophoronediamine (IPD), was studied by Fourier transform infrared spectroscopy (FTIR). The degree of conversions and the reaction rates at different isothermal curing temperatures were calculated from the infrared spectra using a method derived from Beer's law. This method is based on the ratio of the height of the characteristic absorbance peak to reference absorbance peak. A kinetic model proposed by Sourour and Kamal has been used to fit experimental data. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

13.
Polymeric composite manufacturing is a large, rapidly growing and energy consuming industry, where there is an obvious and compelling need for innovative curing technologies conforming to energy efficiency and environmental protection trends. This has led to many research efforts to consider, or in some cases re‐consider, irradiation curing of polymer composites. However, there is still a stifling lack of knowledge of the fundamental mechanisms to obtain homogeneity in the irradiation curing of composites. The key issue of the irradiation curing process, i.e. homogeneous curing affected by electron beam dose and initiator concentration for an epoxy resin is the focus of this paper. The temperature profiles, microstructure, curing degree gradient, and thermomechanical properties of electron beam‐ irradiated epoxy resin were profiled and analyzed, and the results indicated that curing degree in the epoxy resin showed a relatively steady region and an accelerated decrease along the depth direction. It is revealed that there existed an optimal range of concentration of the initiator for irradiation curing of an epoxy resin system. The inhomogeneity in the irradiation‐induced crosslinking structure could be abated by adopting the properly applied irradiation energy and the matching between the irradiation dose and the concentration of the initiator. It can be deduced that for most of the composite products with large thickness, layer upon layer irradiation or irradiation from two sides could be more efficient to obtain a homogeneous crosslinking structure. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
The curing process of an epoxide system was studied at the interface formed between a silane-coated glass fiber and an epoxy matrix. The gradient in the structure of the epoxy resin as a result of the cure process at the fiber/matrix interfacial region was monitored by FTIR imaging. For comparison, the epoxy curing at the interface formed between the epoxy resin and (a) an uncoated glass fiber and (b) a polyorganosiloxane (obtained from the silane used for the glass-fiber coating) were also monitored. Chemically specific images of the OH and the H-N-H groups near the interface region were obtained. These images suggest that there is a chemical gradient in the structure of the matrix from the fiber surface to the polymer bulk due to different conversions. The basis of the different kinetics of the curing reactions is a result of amino group inactivation at the interface. This deactivation translates into an off-stoichiometry of the reaction mixture, which is a function of the distance from the surface of the glass fiber.  相似文献   

15.
In this work, a novel amine-terminated curing agent for epoxy resin based on hexachlorocyclotriphosphazene (HCCP) was synthesized through two steps of nucleophilic substitution reactions by phenol and 4-aminophenol. Its chemical structure was characterized by 1H-NMR, Fourier transform infrared spectroscopy (FTIR) and mass spectrometry (MS). This curing agent was liquid at room temperature which made it easy to disperse in the epoxy resin. The rheological test showed the viscosity of the pre-polymer fluid decreased as the proportion of the curing agent increased so it improved the process performance. The curing reaction was studied by differential scanning calorimeter (DSC). The novel curing agent had a wider range of curing temperature and relatively lower curing temperature in comparison with the widely-using curing agent 4,4′-Diaminodiphenylmethane (DDM). The wider range of curing temperature helped lower the heat accumulation which was an important factor in curing process.  相似文献   

16.
Infrared and NMR data on tertiary amine-catalyzed, dicyandiamide—epoxy resin (and model compound) systems have been utilized to elucidate the mechanism of the curing process. The early exothermic curing reaction is shown to be ring opening of the resin epoxy groups by dicyandiamide imino and amino anionic species, giving rise to N-alkyl cyanoguanidines; a minor amount of polyether formation also occurs at this time. After the exothermic reaction is essentially complete at <90°C., a slow, high temperature (110–200°C.) addition of hydroxyl hydrogen across the nitrile triple bond occurs, giving rise to an imino ether which then rearranges to the guanyl urea.  相似文献   

17.
Ytterbium and lanthanum triflates were used as cationic initiators to cure mixtures of diglycidylether of bisphenol A (DGEBA) and Meldrum acid (MA) in several proportions of comonomers and initiators. The evolution of epoxy and lactone groups during curing, and of linear ester formed in the final materials were evaluated by Fourier transform infrared in the attenuated-total-reflection mode (FTIR/ATR).

The global evolution of the curing process was investigated by calorimetric analysis and the activation energy was calculated by isoconversional procedures.

Shrinkage on curing and thermal degradability of the final materials on varying the initiator and the proportion of Meldrum acid in the mixtures were evaluated. The expandable character of MA was confirmed. The materials obtained were more degradable than conventional epoxy resins due to the tertiary ester groups incorporated into the network by copolymerization, especially those obtained with ytterbium triflate. On increasing the proportion of initiator the degradability was also increased.  相似文献   


18.
The mechanism of imidazole catalysis in the curing of epoxy resins was studied using the PGE/1-methylimidazole, 2-methylimidazole, and 1,2-dimethylimidazole model systems and another model system based on trichloromethylethylene oxide. It was demonstrated that imidazolium systems, generated in the curing reaction, show an inherent instability leading to cleavage of an N? C bond or the 2-C? H bond (2-unsubstituted imidazoles). Fourier-transform infrared spectroscopy was used to follow specific changes in the IR spectrum of the curing mixture during polymerization. The identification of carbonyl absorptions occurring during the polymerization led to the conclusion that ketone formation is a general occurrence in the cure of epoxides with nitrogen compounds. We have also shown that imidazoles are regenerated during the curing process by at least two routes. One pathway for the regeneration of the catalyst involves N-dealkylation of the imidazole via a substitution process. Another route, β-elimination, afforded carbonyl compounds, which account for the previously unexplained appearence of infrared bands in the 1650–1770 cm?1 region during the curing process. These investigations demonstrated the true catalytic function of the imidazole. Possible mechanisms for the regeneration of the catalyst are also suggested.  相似文献   

19.
电子束作用下双酚A型环氧树脂体系的固化特征   总被引:1,自引:0,他引:1  
当前 ,先进树脂基复合材料基本上都是采用加热固化成型的 ,由于其工艺周期长 ,造成复合材料的制造成本较高 ,同时 ,热固化采用的固化剂和有机溶剂往往会对操作人员及环境造成危害 .为顺应复合材料低成本化和无公害化的发展趋势 ,树脂基复合材料的电子束辐射固化技术逐渐发展起来 .复合材料的电子束固化技术是在 2 0世纪 80年代初 ,由法国Aeropaticle的研究人员首先进行的[1] .近年来 ,美国、日本、加拿大及欧洲的许多国家都在积极从事于研究和利用此项技术 ,并且已经取得了可观的成果[2 ] .我国在这方面的研究工作也开始起步 .作…  相似文献   

20.
Activation energy for the curing process of epoxy glass mica tape has been experimentally determined from differential scanning calorimetric measurements and found to be 20 kcal/ mol. Thermochemical calculation shows that the rate controlling step is the dissociation of the C-O bond in the epoxide leading to ring opening and its subsequent reaction with amine hardener. Shelf life has been determined from the measurement of the enthalpy loss corresponding to the curing during the aging process. The kinetics of the aging process also yields an activation energy of 20 kcal/mol which corresponds to the slow curing of the epoxy resin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号