首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ethanol is usually considered as an additive to blend with biodiesels to improve its cold flow characteristics. The thermophysical properties of ethanol with biodiesels are therefore of interest in its applications. In the present work, the densities of ethanol with six components of biodiesel (including methyl caprate, methyl laurate, methyl myristate, ethyl caprylate, ethyl caprate and ethyl laurate) mixtures were measured from 283.15 to 318.15 K and at atmospheric pressure in the overall composition range. Redlich–Kister equation was used to correlate the excess molar volumes of the mixtures, which were calculated from the experimental densities. In addition, Apelblat’s equation was extended to correlate and predict the densities of the studied mixtures as a function of concentration and temperature.  相似文献   

2.
Fatty acid methyl ester (FAME) profiling in complex fish oil and milk fat samples was studied using integrated comprehensive 2D GC (GC × GC) and multidimensional GC (MDGC). Using GC × GC, FAME compounds – cis‐ and trans‐isomers, and essential fatty acid isomers – ranging from C18 to C22 in fish oil and C18 in milk fat were clearly displayed in contour plot format according to structural properties and patterns, further identified based on authentic standards. Incompletely resolved regions were subjected to MDGC, with Cn (n = 18, 20) zones transferred to a 2D column. Elution behavior of C18 FAME on various 2D column phases (ionic liquids IL111, IL100, IL76, and modified PEG) was evaluated. Individual isolated Cn zones demonstrated about four‐fold increased peak capacities. The IL100 provided superior separation, good peak shape, and utilization of elution space. For milk fat‐derived FAME, the 2D chromatogram revealed at least three peaks corresponding to C18:1, more than six peaks for cis/trans‐C18:2 isomers, and two peaks for C18:3. More than 17 peaks were obtained for the C20 region of fish oil‐derived FAMEs using MDGC, compared with ten peaks using GC × GC. The MDGC strategy is useful for improved FAME isomer separation and confirmation.  相似文献   

3.
Optimization of the analytical conditions for determination of the partially hydrogenated products of castor oil obtained by catalytic hydrogen transfer, using Pd/C, with limonene as hydrogen source, was carried out in this work. The study involved the use of three capillary columns: SPB-1, HP-5 and HP-20 M. The best resolution for the oleic acids isomers, C18:1, was obtained with HP-20 M column while, the best resolution, identification and quantification for the products containing OH and CO were obtained with a HP-5 column after the silylation of the methyl esters.  相似文献   

4.
采用过量浸渍法制备了不同镍负载量的Ni P/SAPO-11催化剂,并用N2吸附-脱附、吡啶红外光谱、NH3-TPD、H2-TPR等技术对催化剂的物理化学性能进行了测试。脂肪酸甲酯催化加氢脱氧及产物异构化反应在固定床反应器上进行,液体产品分别用GC-MS和GC进行定性和定量分析。结果表明,在温度为340℃,压力为2.0 MPa,氢气流量为60 m L/min,重时空速为2.5 h-1的操作条件下,当Ni负载量为3%(质量分数)时,原料转化率可以达到97.8%,C15-18的收率84.5%,异构化率14.0%。  相似文献   

5.
Global trends moved towards fast food consumption due to the busy lifestyle of humans. Hence, the intake of fat-related food has exceeded the daily dietary reference intake (DRI) of fat, which caused multiple diseases. Analysis of the fatty acid profile plays a vital role in nutritional labelling and helps to understand the availability of diverse fatty acids among food commodities. This article reviews, general fatty acid extraction and derivatization techniques that have been developed in the past few decades due to the structural differences of fatty acids and briefed the steps involved in the complete process of fatty acid analysis using gas chromatography-mass spectrometry (GC–MS). Hence, the review mainly focused on conventional extraction methods, followed by microwave-assisted extraction (MAE), ultrasonic-assisted extraction (UAE), and supercritical fluid extraction (SFE) methods and widely used acid, base, and modified derivatization techniques. Importantly, this article compares the results of the previous studies in each section which assist to decide on the most appropriate pathway for the fatty acid analysis for different selected food types. Therefore, it is hoped that this review may help researchers to develop existing experimental methods and to improve ‘bad’ fatty acid level mitigation techniques in future.  相似文献   

6.
It is possible to determine the animal of origin of dairy products and raw and cooked meats by high resolution capillary GC of fatty acid methyl esters. This is demonstrated by several examples.  相似文献   

7.
In this paper we explore the possibilities of Raman spectroscopy in order to deduce information on the fatty acid composition of bacterial cells. Therefore, representative strains of two bacterial taxa were each cultured in different conditions and in parallel analyzed by Raman spectroscopy and gaschromatographic FAME analysis. Raman spectra of pure fatty acids were recorded and used as reference spectra. The culturing conditions for each strain could be easily distinguished by the fatty acid information retrieved from bacterial Raman spectra. Chemometric techniques such as EMSC and PCA allowed to extract information about groups of fatty acids, that was consistent with the results from FAME analysis. Although the information retrieved from Raman spectroscopy is not as refined as that from FAME analysis, the presented methods could be useful to obtain basic information on the fatty acid present in bacteria when performing Raman spectroscopic analysis for fast whole cell profiling, which provides information for different types of cell components (fatty acids, amino acids, primary metabolites, etc.).  相似文献   

8.
The transesterification of palm oil in supercritical methanol has been investigated without using any catalyst. HCFC-141b was used as co-solvent to reduce the molar ratio of methanol to palm oil under the milder conditions. The reaction was carried out in a flow-type tubular reactor. The residence time was fixed at 40 min. When the molar ratio of methanol to palm oil was set to 20:1 at 325 °C and 35 MPa, the optimum molar ratio of methanol to co-solvent was found to be 20:1. Addition of HCFC-141b increased FAME production even at the lower molar ratio of methanol to palm oil. In addition, a similar FAME content was obtained under the milder conditions (5 MPa lower pressure) compared with conditions without co-solvent at higher pressure. The role of HCFC-141b in the transesterification reaction under supercritical conditions was investigated.  相似文献   

9.
Summary Trimethylsulfonium hydroxide (TMSH) can convert fatty acids into the corresponding fatty acid methyl esters (FAMEs) in a single step. These fatty acids may also be bound in biomolecules such as phospholipids and/or glycerides. Complex mixtures of saturated and unsaturated FAMEs which may contain hydroxy and cylopropyl groups are obtained by trans-esterification; they can easily be separated in most cases by capillary GC. When FAMEs are generated from different microorganisms e.g. bacteria the patterns of the chromatograms are characteristic. Examples of characteristic patterns of bacteria with different cell wall structures are shown. The described method of transesterification can also be applied directly to blood serum without sophisticated sample pretreatment. The profiles of the chromatograms match well those described in the literature obtained by other methods of trans-esterification or sample preparation.  相似文献   

10.
A method to separate FAME and the linoleic and linolenic acids isomers by GCxGC using an apparatus equipped with a capillary flow technology (CFT) based modulator and a FID detector has been developed. Four different column combinations (one conventional and three inverted phase sets) were used in these experiments. The conventional set first involved a DB5-MS non-polar column followed by a highly polar HP-INNOWax column in the second dimension. The inverted phase set comprised of a highly polar BPX-70 column in the first dimension and a non-polar ZB5-MS column for the second dimension. Furthermore, the influence of the length of the second dimension column on FAME isomer separation was studied in the inverted phase sets, along with other parameters like the modulation time and column flow. The best results in terms of the time required for the analysis and number of FAME identified with the inverted set were achieved with the shorter second dimension column. After supercritical fluid extraction, the method was applied to identify FAMEs in broccoli leaves from three different cultivars (Naxos, Nubia and Viola).  相似文献   

11.
Comprehensive multidimensional gas chromatography (GC×GC) is a powerful separation technique. One of the features of this technique is that it offers separations with more apparent structure than that offered by conventional one-dimensional GC (1-D GC). While some previous studies have alluded to this structure, and used structured retention patterns for some simple classifications, the topic of structured retention in GC×GC has not been studied in any great detail. Using the separation of fatty acid methyl esters (FAME) on both nonpolar/polar and polar/nonpolar column sets, the interaction between the separation dimensions and the sample dimensions is explored here. The GC×GC separation of a series of compounds is presented as a projection of the sample from sample space, a p-dimensional space with dimensions defined by the dimensionality of the sample, into separation space: for GC×GC, a two-dimensional plane passing through the sample space in an orientation defined by the separation conditions. Using this conceptual model and some a priori knowledge of the sample, it is shown how the image of the sample in the separation space can be used to construct an image of the sample in alternate dimensions, such as second dimension retention factor (2k) vs. chain length in the case of FAME. These projections into alternate dimensions should facilitate the interpretation of the complex patterns found within the GC×GC chromatogram for the identification and classification of compounds.  相似文献   

12.
A rapid, precise method has been developed for the determination of the fatty acid profile of small samples of milk fat. Lipids are extracted from milk with n-hexane, triglycerides are trans-esterified with sodium methoxide, and free fatty acids are esterified with methanolic hydrochloric acid. The methyl esters are separated on a narrow-bore, 5% phenyl polydimethylsiloxane capillary column. The fatty acid profile is precise: for the various acids the coefficients of variation of peak area are between 6.7% and 9.7%, with a mean of 8.1%, and the coefficients of variation of peak percentage area are between 0.3% and 5.5% with a mean of 1.8%. The nature of the sample preparation procedure does not limit throughout.  相似文献   

13.
Abstract

In the present work, it has been observed that magnetic (Fe3O4) – silica core- shell nanoparticles helps in flocculation of Chlorella pyrenoidosa cells with simultaneous production of linoleic acid. The mean particle size in Dynamic light scattering (DLS) of the silica coated magnetic nanoparticle was estimated 444.7?nm. The characterization of nanoparticles was also performed by X-ray diffraction technique (XRD). Apart from flocculation, it has been observed that in presence of magnetic silica core- shell nanoparticles the amount of lipid obtained was four times than that of control. On the contrary, in presence of these nanoparticles, linoleic acid (18:2) has been produced in Chlorella pyrenoidosa cells almost by 80% whereas, it has been noticed only 8.73% in control. This is the first report where the linoleic acid has been obtained as major component of microalgal fatty acid methyl esters (FAME) having important application in nutraceuticals and pharmaceutical sectors.  相似文献   

14.
15.
Summary Polyunsaturated fatty acids have been analysed as methyl esters by liquid chromatography on porous graphitic carbon and the results compared with those obtained on octadecyl bonded phases. Chromatographic behaviour on octadecyl bonded phases arises principally as a result of hydrophobic interactions with the bonded phase. Because the retention of analytes is greater on porous graphitic carbon than on octadecyl phases, organic mobile phases are required. When the number of double bonds is low (ca 1–3), the behaviour of porous graphitic carbon is similar to that of octadecyl bonded phases, but when this number increases stronger interactions with the flat surface of the graphite appear, resulting in new selectivity. These two ‘reversed-phase’ systems are considered complementary for separation of different fatty acid methyl esters. An additional advantage of porous graphitic carbon is that it enables isolation of hexadecartrienoic and hexadecadienoic acids, which are not available commercially.  相似文献   

16.
The C8 to C18 fatty acid methyl esters (FAME) have been compared as solvents for two epoxy resin pre-polymers, bisphenol A diglycidyl ether (DGEBA) and triglycidyl p-aminophenol ether (TGPA). It was found that the solubilization limits vary according to the ester and that methyl caprylate is the best solvent of both resins. To explain these solubility performances, physical and chemical properties of FAME were studied, such as the Hansen parameters, viscosity, binary diffusion coefficient and vaporization enthalpy. Determination of the physicochemical parameters of FAME was carried out by laboratory experimentations and by calculation from bibliographic data. The Hansen parameters of FAME and epoxy resins pre-polymers were theoretically and experimentally determined. The FAME chain length showed a long dependence on the binary diffusion parameters and kinematic viscosity, which are mass and momentum transport properties. Moreover, the vaporization enthalpy of these compounds was directly correlated with the solubilization limits.  相似文献   

17.
18.
Comparative characterization of Jatropha,soybean and commercial biodiesel   总被引:1,自引:0,他引:1  
Oil was extracted from seeds of Jatropha Curcas,in high yields(up to 40% by weight).The extracted Jatropha oil was converted in a laboratory reactor to biodiesel by transesterification.Analysis of Jatropha oil and Jatropha biodiesel by GC/MS and GC/SIMDIS showed that Jatropha oil could be readily converted to a biodiesel product through NaOH catalyzed transesterification.The resulting biodiesel has desirable properties such as high cetane number and low flash point,which are major improvements over the prop...  相似文献   

19.
Xu M  Voorhees KJ  Hadfield TL 《Talanta》2003,59(3):577-589
Direct CI mass spectrometry profiling of fatty acid methyl esters (FAMEs) from in situ thermal hydrolysis/methylation (THM) of whole bacterial cells with tetramethylammonium hydroxide (TMAH) has been demonstrated as a potential method for real time and fieldable detection/identification of microorganisms. Bacillus anthracis (Ames), Yersinia pestis (Nair. Kenya), Vibrio cholerae (E1 Tor), Brucella melitensis (Abortus wild) and Francisella tularensis (LVS vaccine) were profiled by this method during a 10-month period. Repeatability of the in situ FAME data was calculated using one-way analysis of variance (ANOVA) and a t-test. Artificial neural network (ANN) and multivariate statistics of the FAME profiles were also compared for bacterial identification/classification. Equivalent results were obtained with a multivariate rule building expert system (MuRES) and the ANN. However, the ANN analysis required much less computer time and was deemed the best choice for this application. In situ THM FAME profiles of the bacterial samples provided comparable results with those obtained from the Microbial Identification System (MIDI) (Newark, DE) wet chemistry-gas chromatographic based system.  相似文献   

20.
Biodiesel is biodegradable and nontoxic, and it significantly reduces toxic and other emissions when burned as a fuel. The advantages of biodiesel as diesel fuel are its portability, ready availability, renewability, higher combustion efficiency, non-toxicity, higher flash point, and lower sulfur and aromatic content, higher cetane number, and higher biodegradability. The major disadvantages of biodiesel are its higher viscosity, lower energy content, higher cloud point and pour point, higher nitrogen oxide (NOx) emissions, lower engine speed and power, injector coking, engine compatibility, high price, and greater engine wear. The technical disadvantages of biodiesel/fossil diesel blends include problems with fuel freezing in cold weather, reduced energy density, and degradation of fuel under storage for prolonged periods. The sources of biodiesel are vegetable oils and fats. The direct use of vegetable oils and/or oil blends is generally considered to be unsatisfactory and impractical for both direct injection and indirect type diesel engines because of their high viscosities and low volatilities injector coking and trumpet formation on the injectors, higher level of carbon deposits, oil ring sticking, and thickening and gelling of the engine lubricant oil, acid composition. Biodiesel is obtained by transesterifying triglycerides with methanol. A popular variation of the batch transesterification process which needs high alcohol/acid ratio (several separation problems and high corrosivity and toxicity) is the use of continuous stirred tank reactors in series. This continuous process is heterogeneous and is based on reactive distillation. The key factor is the selection of the right and effective solid catalyst which leads to reduction of energy consumption and investments at all.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号