首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Copoly(γ-stearly-L -glutamate-γ-methyl-L -glutamate)s with various compositions were synthesized by the ester exchange reaction of poly(γ-methyl-L -glutamate). Circular dichroism studies were carried out for solution and solid film as a function of the degree of stearylation and temperature. The slight and gradual temperature dependence of molecular ellipticity was observed for solution of all the copolyglutamates studied here and for the solid film of the copolyglutamate with the degree of stearylation of 16%, indicative of no reversal in the helix sense. However the remarkable change in negative molecular ellipticity with temperature was detected for the solid film of the copolyglutamate with a low degree of stearylation, e.g., 52%, whereas the drastic change in molecular ellipticity from a negative to positive value appeared for that with a higher degree of stearylation. This is discussed in terms of the reversal in the helix sense from a right- to left-handed α helix with the increase of temperature occurring at the melting temperature of the ordered side chain region.  相似文献   

2.
Good yields of some crystalline γ-alkyl esters of L -glutamic acid were obtained by carrying out the esterfication with a small (20–50 mole-%) excess of alcohol in aqueous hydrochloric acid or 60–80% sulfuric acid followed by neutralization with an alkaline solution. This new method made it possible to synthesize various γ-alkyl L -glutamates, including those higher than ethyl, and consequently, various poly(γ-alkyl L -glutamates) such as methyl, ethyl, n-propyl, n-butyl, isobutyl, and isoamyl. The conformation of these poly-L -glutamates in the solid state was determined by the infrared absorption method. The molecular motions of the polymers of γ-methyl, -ethyl, -n-propyl, -n-butyl, and-isoamyl L -glutamates and poly(γ-methyl-D -glutamate) in the solid state were studied by NMR, and dielectric and mechanical measurements. At temperatures up to 400°K., the NMR spectra of poly(γ-methyl D -glutamate) can be explained only by rotational motion of the side chain. Also, from NMR results, rotational motion of C?O groups in the side chain of poly(γ-methyl D -glutamate) is expected near room temperature, and such a motion was examined by dielectric measurements. Rotation of C?O groups in the side chains of polymers of γ-methyl, γ-ethyl, γ-n-propyl, γ-n-butyl, and γ-isoamyl L -glutamate was also observed near room temperature by dielectric measurements in the frequency range from 102 to 106 cps. Activation energies obtained by dielectric and mechanical measurements were similar to those for the side chain motions of the corresponding esters of poly(methacrylic acid). Although it has been noted that the molecular motion of poly(γ-benzyl L -glutamate) in the solid state at room temperature may be related to the motion of its back bone, the molecular motion in these poly-L -glutamates at these temperatures can be explained only in terms of side-chain rotation.  相似文献   

3.
The synthesis of methacrylates and acrylates containing 4-methoxy-4′-hydroxy-α-methylstilbene and 4-hydroxy-4′-methoxy-α-methylstilbene constitutional isomers attached to the polymerizable group through flexible spacers containing 11, 8, 6, 3, and respectively 2 methylenic units is described. The radical copolymerization of a 1/2 or 2/1 mole ratio of the two constitutional isomeric monomers led to thermotropic side-chain liquid crystalline polymers in all cases. The synthesis of copolysiloxanes based on the same constitutional isomeric mesogens as side groups, and flexible spacers containing 11, 8, 6, 5, and respectively 3 methylenic units is also described. All polymers were characterized by differential scanning calorimetry and optical polarization microscopy. The polymers containing 11 methylenic units in the spacer exhibit Sc mesomorphism, while the other polymers are nematic. Copolymethacrylates do not undergo side-chain crystallization. Only the copolyacrylate containing 11 methylenic units in the spacer exhibits side-chain crystallization. All the copolysiloxanes display side-chain crystallization. The number of melting transitions seen for these polymers decreases with increasing spacer length. Copolysiloxanes containing dissimilar spacer length were also prepared. Only the copolymer synthesized with highly dissimilar spacer lengths, i.e., containing 3 and 11 methylenic units, does not undergo side-chain crystallization. These results have demonstrated that while the type of mesophase is dictated only by the spacer length, the degree of decoupling of the motion of the side-groups from the motion of the main chain is strongly dependent on the nature of the polymer backbone. For the same mesogenic unit and spacer length, the thermal stability of the mesophase is also dictated by the nature of the polymer backbone. The use of constitutional isomers of mesogenic units as side groups in liquid crystalline polymers provides at least qualitative information on the degree of decoupling of the side groups from the polymer main chain.  相似文献   

4.
Crystallization and melting behavior are studied by small-angle X-ray scattering (SAXS) for a series of recently synthesized monotropic liquid crystalline polycarbonates based on α-methyl stilbene mesogen and methylene flexible spacer. The one-dimensional electron density correlation function is used to obtain long period, crystal thickness, and linear crystallinity from the Lorentz-corrected SAXS intensity. Changes in these parameters during nonisothermal crystallization and melting are explained by a model of dual crystal populations. The primary crystals form first using the liquid crystalline phase as crystal nuclei, while smaller and less perfect crystals form later from the isotropic phase at low temperature. The results of the real-time SAXS study of isothermal crystallization also support the view that the nematic phase serves as crystal nuclei for fast crystallization. An odd-even effect in crystal thickness and linear crystallinity is observed in all the SAXS experiments mentioned above. The results of this study and our complementary wide-angle X-ray scattering (WAXS) investigation show clearly that the difference in the position of the neighboring carbonate dipoles on a chain affects structural organization both at the unit cell level and at the level of the crystal in these monotropic LCPs. © 1995 John Wiley & Sons, Inc.  相似文献   

5.
Static and dynamic properties, and surface morphologies of monolayers at the air-water interface of a fuzzy rod polymer, poly(γ-stearyl α, L-glutamate), PSLG, have been examined by the Wilhelmy plate method for surface pressure, electrically induced capillary wave diffraction (ECWD), epi-fluorescence microscopy, and atomic force microscopy (AFM). The monolayers were first formed by spreading polymer solutions at the air-water interface and allowing the solvent to evaporate to obtain polymer films, i.e., spread monolayers. The surface mass density was varied by either successive additions of more solutions on a given surface area or step-wise compression of the surface barrier on a Langmuir trough. Surface pressure isotherms at 23–;60°C were confirmed to be reversible and reproducible, and an abrupt change at approximately 60°C was observed, which is reported as the melting point of crystalline stearyl side chains. By AFM, the monolayer director n by surface alignment was confirmed as perpendicular to the compression direction and certain islands of departure from the monolayer state were visualized upon transferring the monolayers horizontally to silicon wafers. Macroscopic anisotropy in the surface alignment was probed by the electrocapillary waves propagated perpendicular (⟂) and parallel (∥) to the director n; the surface tension anisotropy amount to about 7% difference, σ < 0.07, where σ is the surface tension deduced from the wave propagation characteristics. Multidomain morphologies of the monolayers were imaged by epi-fluorescence microscopy and they were found to differ according to the method of monolayer mass density variation, i.e., the successive addition and step-wise compression. © 1996 John Wiley & Sons, Inc.  相似文献   

6.
Carbon‐13 spin–lattice relaxation times are measured for poly(octadecyl acrylate) above and below the melting point of the crystalline side chains. The chain backbone has long spin–lattice relaxation times below the melting point that shorten by more than an order of magnitude as the melting point range is traversed. Below the melting point, the backbone is nearly immobilized with spin–lattice relaxation changing very slowly with temperature. Above the melting point, the shorter spin–lattice relaxation times are typical of a rubber above the glass transition and decrease with increasing temperature. The methylene groups in the side chain are quite mobile well below the melting point, indicating fairly rapid anisotropic motion within the crystal. The methyl group at the end of the chain and the adjacent methylene group have longer spin–lattice relaxation times, indicating the greatest side‐chain mobility at the end, which is in the middle of the crystal structure. The side‐chain carbon adjacent to the carbonyl group is as mobile as the majority of the side‐chain carbon, indicating side‐chain mobility extends to all of the side‐chain CH2 groups. The abrupt transition in the mobility of the backbone is not typical of the amorphous phase in a semicrystalline polymer where the backbone units can crystallize. The close proximity of every backbone segment to the crystalline domain locks backbone segmental motion below the melting point. Melting and crystallization of the side chains switch segmental motion of the backbone on and off. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 1548–1552, 2001  相似文献   

7.
In this study, we investigated the melting and crystallization behavior of polyhedral oligomeric silsesquioxane (POSS)‐capped poly(ε‐caprolactone) PCL with various lengths of PCL chains by means of X‐ray diffraction and differential scanning calorimetry. This organic–inorganic macromolecule possesses a tadpole‐like structure in which the bulky POSS cage is the “head” whereas PCL chain the “tail”. The novel organic–inorganic association result in the significant alterations in the melting and crystallization behavior of PCL. The POSS‐terminated PCL displayed the enhanced equilibrium melting points compared to the control PCL. Both the overall crystallization rate and the spherulitic growth rate of the POSS‐terminated PCLs increased with increasing the concentration of POSS (or with decreasing length of PCL chain in the hybrids). The analysis of Avrami equation shows that the crystallization of the POSS‐terminated PCL preferentially followed the mechanism of spherulitic growth with instantaneous nuclei. It is found that the folding free energy of surface for the POSS‐terminated PCLs decreased with increasing the concentration of POSS. It is found that the folding free energy of surface for the POSS‐terminated PCLs decreased with increasing the concentration of POSS. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2201–2214, 2007  相似文献   

8.
The annealing behavior of polytetrafluoroethylene (PTFE) irradiated with 1 × 105 R of γ rays has been studied in terms of the degree of crystallinity and the melting temperature. At short annealing times the crystallinity changes rapidly to a level characteristic of the annealing temperature. It seems that the crystallization arises from transport of chain segments in noncrystalline regions. The increase in crystallinity at long times of annealing is linear in the logarithm of time. This process is mostly due to elimination of voids formed during γ irradiation, but it also involves slight lamellar thickening and crystallization to form extended-chain regions.  相似文献   

9.
Poly(stearyl methacrylate‐co‐methacrylic acid) (SMA) and its sodium ionomer (SMI) were synthesized and the permeability of the model drug through the SMA and SMI films was measured. The side‐chain crystalline structure for the dried and hydrated SMA, SMI was investigated using DSC and WAXS. The side‐chain crystalline structure of the hydrated SMI was much more stable than that of the hydrated SMA at room temperature. The temperature‐sensitive phase transition of the side‐chain crystalline structure for the hydrated SMI was also studied by the temperature variable WAXS experiment. The temperature‐sensitive permeation of the hydrophilic model drug through SMI was observed around 20 °C, whereas the drug permeation through SMA was almost constant within the temperature range studied. The change of drug permeability through the SMA and SMI films with temperature seems to be associated with the side‐chain crystalline structure of the polymer. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 823–830, 2000  相似文献   

10.
Poly(2‐alkyl‐2‐oxazoline)s (PAOx) exhibit different crystallization behavior depending on the length of the alkyl side chain. PAOx having methyl, ethyl, or propyl side chains do not show any bulk crystallization. Crystallization in the heating cycle, that is, cold crystallization, is observed for PAOx with butyl and pentyl side chains. For PAOx with longer alkyl side chains crystallization occurs in the cooling cycle. The different crystallization behavior is attributed to the different polymer chain mobility in line with the glass transition temperature (Tg) dependency on alkyl side chain length. The decrease in chain mobility with decreasing alkyl side chain length hinders the relaxation of the polymer backbone to the thermodynamic equilibrium crystalline structure. Double melting behavior is observed for PButOx and PiPropOx which is explained by the melt‐recrystallization mechanism. Isothermal crystallization experiments of PButOx between 60 and 90 °C and PiPropOx between 90 and 150 °C show that PAOx can crystallize in bulk when enough time is given. The decrease of Tg and the corresponding increase in chain mobility at T > Tg with increasing alkyl side chain length can be attributed to an increasing distance between the polymer backbones and thus decreasing average strength of amide dipole interactions. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 721–729  相似文献   

11.
In this work, crystallization and melting behavior of metallocene ethylene/α‐olefin copolymers were investigated by differential scanning calorimetry (DSC) and atomic force microscopy (AFM). The results indicated that the crystallization and melting temperatures for all the samples were directly related to the long ethylene sequences instead of the average sequence length (ASL), whereas the crystallization enthalpy and crystallinity were directly related to ASL, that is, both parameters decreased with a decreasing ASL. Multiple melting peaks were analyzed by thermal analysis. Three phenomena contributed to the multiple melting behaviors after isothermal crystallization, that is, the melting of crystals formed during quenching, the melting‐recrystallization process, and the coexistence of different crystal morphologies. Two types of crystal morphologies could coexist in samples having a high comonomer content after isothermal crystallization. They were the chain‐folded lamellae formed by long ethylene sequences and the bundlelike crystals formed by short ethylene sequences. The coexistence phenomenon was further proved by the AFM morphological observation. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 822–830, 2002  相似文献   

12.
The introduction of an amide bond linking side chains of the first and fifth amino acids forms a cyclic pentapeptide that optimally stabilizes the smallest known α‐helix in water. The origin of the stabilization is unclear. The observed dependence of α‐helicity on the solvent and cyclization linker led us to discover a novel long‐range n to π* interaction between a main‐chain amide oxygen and a uniquely positioned carbonyl group in the linker of cyclic pentapeptides. CD and NMR spectra, NMR and X‐ray structures, modelling, and MD simulations reveal that this first example of a synthetically incorporated long‐range n to π* CO???Cγ=Ο interaction uniquely enforces an almost perfect and remarkably stable peptide α‐helix in water but not in DMSO. This unusual interaction with a covalent amide bond outside the helical backbone suggests new approaches to synthetically stabilize peptide structures in water.  相似文献   

13.
We investigated the mechanical properties, thermal behavior, physical state, and colloidal structure of a model gel network formulated with various ratios of sodium dodecyl sulfate polyacrylamide (SDS) and cetyl/stearyl fatty alcohol (FA) mixture in constant amounts of water (89%). The metastable gel, formed by slowly cooling stirred samples from temperatures above the chain melting temperature (Tm) of the long chain FA, has a lamellar structure with a periodic inter bilayer spacing of approximately 30 nm. The bilayers remain homogeneous with SDS being immobilized in the FA matrix upon chain freezing. The chain length mismatch leads to an increased structural disorder among the alkyl chains upon SDS incorporation among the FA. As a result, the elastic modulus decreased with increasing SDS content. Conclusions were based on a large number of experiments involving differential scanning calorimetry, rheology, 1H NMR spectroscopy, and small angle x-ray scattering. Results from this work have uncovered the physical nature of these networks and gave insight into the role of anionic surfactants on the assembly, physical state, and mechanical properties of gel networks.  相似文献   

14.
Conformations of a series of poly(γ-alkyl L -glutamates) (ethyl, n-propyl, n-butyl, isobutyl, and isoamyl) were studied by ORD and infrared absorption methods. All except the n-propyl ester were found to be in helical form in nonpolar non-aromatic solvents such as ethyl acetate, chloroform, ethylene dichloride, methylene chloride, carbon tetrachloride, 2-chloroethanol, dimethylformamide, and dioxane. In such cases, the Cotton effects due to the n–π* transition of peptide bonds occurred near 234 mμ and were of a magnitude similar to those found for poly(γ-benzyl L -glutamate) and poly-L -methionine in nonpolar non-aromatic organic solvents. These four polypeptides in aromatic nonpolar solvents, such as benzene, benzyl alcohol, pyridine, and m-cresol, were also found to be in helical form, although the ORD parameters differed considerably from the values in non-aromatic solvents. An essential cause seems to be the interaction of π electrons on peptide bonds with π electrons in the solvents. Helix-coil transitions of these esters in chloroform-dichloroacetic acid mixtures (dichloroacetic acid seems to be a random coil-forming solvent) were expressed by the Shechter-Blout formulation. This was not true, however, for helix–coil transitions in benzyl alcohol–dichloroacetic acid mixtures. The dependence of the helical stability of these polypeptides in chloroform solution upon the side-chain length and upon temperature is discussed.  相似文献   

15.
Crystalline poly(n-nonaldehyde) (PNA) was prepared by anionic polymerization of n-nonaldehyde (NA) in methylcyclohexane (MCH) with lithium tertiary butoxide (LTB) as the initiator. Normal low-temperature conditions did not give polymer reprodusibly; however, when the polymerization was carried out with a gradual temperature decrease to ?60°C holding at this temperature followed by completion at ?78°C, a moderate yield of PNA was obtained. The polymer was acetate capped and characterized. Infrared and PMR spectroscopy, as well as degradation of the polymer in the presence of 2,4-dinitrophenylhydrazine to the hydrazone, conclusively proved the chemical structure of the polymer. VPO measurements and measurement of the inherent viscosity showed the polymer to be of moderate molecular weight. PNA is highly crystalline and shows two transition regions, one corresponding to the melting of the main chain at temperatures above 120°C and one region between 50 and 80°C, which is related to the crystallization of the aliphatic side chains. PNA, although inherently brittle, can be extruded through an orifice at a temperature near the side-chain melting temperature to give an extrudate whose x-ray patterns show the characteristics of a fiber diagram. It is suggested that the crystal structure of the PNA is similar to that of poly(n-heptaldehyde) but with a larger a spacing, which is expected from a longer aliphatic side chain.  相似文献   

16.
Cyclic trimers of n-nonaldehyde (NA), n-decaldehyde (DA), n-undecaldehyde, (UA) and n-dodecaldehyde (DDA) were prepared by reacting the individual aldehydes with protic or Lewis acids. Higher aliphatic aldehydes whose long paraffinic chains dominate the general properties of these compounds do not trimerize readily the trimers, when formed, are purified with difficulty. The cyclic trimers, characterized by IR and NMR spectroscopy, are exclusively the cis isomers and commonly exist in all equatorial conformations. The melting behavior of the cyclic trimers was studied by DSC. The melting endotherms and the enthalpies of fusion increase with increasing chain length. Although the melting temperatures of the cyclic trimers are similar to the melting range of the side-chain crystallization of the corresponding crystalline isotactic polyaldehydes, the transition peaks of the trimers are single peaks and much sharper than the corresponding polymer peaks.  相似文献   

17.
Hybrid peptides composed of α‐ and β‐amino acids have recently emerged as new class of peptide foldamers. Comparatively, γ‐ and hybrid γ‐peptides composed of γ4‐amino acids are less studied than their β‐counterparts. However, recent investigations reveal that γ4‐amino acids have a higher propensity to fold into ordered helical structures. As amino acid side‐chain functional groups play a crucial role in the biological context, the objective of this study was to investigate efficient synthesis of γ4‐residues with functional proteinogenic side‐chains and their structural analysis in hybrid‐peptide sequences. Here, the efficient and enantiopure synthesis of various N‐ and C‐terminal free‐γ4‐residues, starting from the benzyl esters (COOBzl) of N‐Cbz‐protected (E)α,β‐unsaturated γ‐amino acids through multiple hydrogenolysis and double‐bond reduction in a single‐pot catalytic hydrogenation is reported. The crystal conformations of eight unprotected γ4‐amino acids (γ4‐Val, γ4‐Leu, γ4‐Ile, γ4‐Thr(OtBu), γ4‐Tyr, γ4‐Asp(OtBu), γ4‐Glu(OtBu), and γ‐Aib) reveals that these amino acids adopted a helix favoring gauche conformations along the central Cγ? Cβ bond. To study the behavior of γ4‐residues with functional side chains in peptide sequences, two short hybrid γ‐peptides P1 (Ac‐Aib‐γ4‐Asn‐Aib‐γ4‐Leu‐Aib‐γ4‐Leu‐CONH2) and P2 (Ac‐Aib‐γ4‐Ser‐Aib‐γ4‐Val‐Aib‐γ4‐Val‐CONH2) were designed, synthesized on solid phase, and their 12‐helical conformation in single crystals were studied. Remarkably, the γ4‐Asn residue in P1 facilitates the tetrameric helical aggregations through interhelical H bonding between the side‐chain amide groups. Furthermore, the hydroxyl side‐chain of γ4‐Ser in P2 is involved in the interhelical H bonding with the backbone amide group. In addition, the analysis of 87 γ4‐residues in peptide single‐crystals reveal that the γ4‐residues in 12‐helices are more ordered as compared with the 10/12‐ and 12/14‐helices.  相似文献   

18.
The melting behavior and crystallization kinetics of poly(2‐hydroxyethoxybenzoate) (PHEBA) were investigated with differential scanning calorimetry and hot‐stage optical microscopy. The observed multiple endotherms, commonly displayed by polyesters, were influenced by the crystallization temperature. By the application of the Hoffman–Weeks method to the melting temperatures of isothermally crystallized samples, a value of 232 °C was obtained for the equilibrium melting temperature. Isothermal crystallization kinetics were analyzed according to Avrami's treatment. Values of Avrami's exponent n close to 3 were obtained, independently of the crystallization temperature, in agreement with a crystallization process originating from predetermined nuclei and characterized by three‐dimensional spherulitic growth. In fact, space‐filling banded spherulites were observed by hot‐stage optical microscopy at all crystallization temperatures explored, with the band spacing increasing with increasing crystallization temperature. The rate of crystallization became lower as the crystallization temperature increased as usual at low undercooling, with the crystallization process controlled by nucleation. The equilibrium heat of fusion was determined by differential scanning calorimetry and wide‐angle X‐ray scattering measurements. Finally, the crystal phase of PHEBA was investigated with wide‐angle X‐ray scattering, and a triclinic unit cell was hypothesized. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1354–1362, 2002  相似文献   

19.
The nature of the crystal transition of the α-helical forms of poly (γ-n-alkyl glutamate)s (alkyl = ethyl, propyl, and butyl) is described. The transition is thermally reversible, and its temperature T2 is much higher than the glasslike transition temperature T1 associated with the side-chain motion. The main chains undergo large-scale motion (librational about the chain axis and translational along the axis) above T3 ≈ 200°C. The structure observed below T2 is anomalously disordered compared with that observed between T2 and T3. The crystal structure emerging above T2 is analyzed for a typical sample of poly(γ-n-propyl L -glutamate). The trigonal unit cell contains three α-helices so that each helix is surrounded by other helices in the same fashion, but the helices are not interrelated by a crystallographic symmetry element. The side chains suffer no particular change at T2. The main-chain motion gives rise to the T2 transition by inducing attractive forces between interpenetrating side chains.  相似文献   

20.
Dielectric constant and dielectric loss of copolymers of methyl methacrylate (MMA) with n-butyl methacrylate (nBMA) and isobutyl methacrylate (iBMA) have been measured in the frequency range 30 cps to 1 Mcps at temperatures from 70°K to 370°K. Results lead, together with those of previously published investigations on copolymers of MMA, to the following conclusions. (1) The loss-peak temperature attributed to side-chain relaxation (β peak) of PMMA varies with the comonomer ratio when the comonomer does not have an α-methyl group, but remains almost unchanged for comonomers having an α-methyl group. (2) In both cases, the β peak height of PMMA decreases with increasing ratio of comonomer B and completely vanishes for poly-B, and the loss peak temperature plotted against the fraction of B does not extrapolate to the β peak of poly-B. It is suggested on the basis of the above facts that the moving unit in the side-chain relaxation consists of a single side chain with a segment of the backbone chain and that the change in mobility of the side chain upon copolymerization results from the distortion of the helical structure of the backbone chain due to random distribution of α-methyl groups. Dielectric studies of the low-temperature side-chain relaxation (β2 peak) in PnBMA, poly(n-octyl methacrylate), and poly(n-dodecyl methacrylate) (130°K at 1 kcps) have been made and an interpretation is offered for the molecular nature of this relaxation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号