首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
The Syntheses and the photolyses of the acylsilane 1 and the corresponding methyl ketone 2 are described. On n,π*-excitation, the silyl ketone 1 as well as the methyl ketone 2 undergo a Norrish type II reaction involving γ-H-abstraction and fragmentation to the diene 12 , and acetone ( 20 ) or the acylsilane 26 , respectively. The methyl ketone 2 , but not the acylsilane 1 , isomerizes to cyclobutanols ( 21A - D ). Additionally, compound 1 shows photochemical behavior typical of acylsilanes undergoing rearrangement to the siloxycarbene intermediate c . Insertion of c into the O? H-ond of the enol 28 leads to compound 13 . Initial trapping of the siloxycarbene c by H2O, however, gives rise to the formation of compounds 16 – 18 . As minor photolysis products of 1 , compounds 14 and (Z)- 15 were formed; however, on vapor phase thermolysis (520°) of 1 , compounds 14 and (E/Z)- 15 were obtained in 92% combined yield. To a small extent the acylsilane 1 also undergoes Norrish type I cleavage leading to the acid 19 .  相似文献   

2.
The synthesis of cyclopropyl silyl ketones possessing a hydrocarbon group at 1-position of three-membered ring was investigated. The reaction of sulfoxonium ylide with α,β-unsaturated acylsilanes derived from α,β-unsaturated aldehydes did not afford the desired acylsilane derivatives. Instead, the corresponding silyl enol ethers were yielded exclusively. On the other hand, the Corey-Chaykovsky cyclopropanation of α-substituted α,β-unsaturated aldehydes proceeded well to give 1-substituted cyclopropyl aldehydes. The silyl substitution of formyl proton in the obtained aldehydes via umpolung of carbonyl group afforded the target acylsilanes.  相似文献   

3.
The synthesis of the cyclopropyl silyl ketones 1 – 4 is described. The trimethylsilyl ketone 1 was prepared from geraniol ((E)- 5 ) in ca. 10% overall yield by cyclopropanation leading to 6 , CrO3 oxidation to the aldehyde 8 , reaction of the latter with trimethylsilyl anion to 14A + B , and CrO3 oxidation to 1 . Also for the (t-butyl)dimethylsilyl ketones 2 – 4 , an efficient four-step synthesis with overall yields of 48%, 85%, and 13%, respectively, was elaborated, starting from the allylic alcohols (E)- 5 , and 23 . The method of preparation involves as the key step a Wittig rearrangement of the silylallyl ethers ((E/Z)- 20 , 24 ) to the silyl alcohols ((E/Z)- 21 , 25 ), subsequent cyclopropanation ( 19A + B , 22A + B , 26 ), and oxidation to the cyclopropyl silyl ketones 2 – 4 .  相似文献   

4.
The photolyses and thermolyses of the α,β-epoxy silyl ketones 5 and 6 are described. On n,π*-excitation, the silyl ketones 5 and 6 were transformed to the ketone 7 and the ketene 8 in quantitative yield. The formation of 8 may be explained by initial cleavage of the C(α)? O bond and subsequent C(1)→C(2) migration of the (t-Bu)Me2Si group. In contrast to the acylsilanes 5 and 6 , the photolyses of the analogous methyl ketones 11 and 12 gave a very complex mixture of products. On thermolysis, 5 and 6 yielded the ketone 7 and the acetylenic compound 9 , which were probably formed via a siloxycarbene intermediate. In addition, the 1,3-dioxle 10 was formed via an initial C(α)? C(β) bond cleavage leading to the ylide g and subsequent intramolecular addition of the carbonyl group. The analogous 1,3-dioxole 13 was obtained on pyrolysis of the methyl ketones 11 and 12 .  相似文献   

5.
The syntheses, photolyses, and thermolyses of the α,β-unsaturated silyl ketones (E/Z)-7, (E)- 8 , and (E)- 9 are described. On n,π*-excitation (λ > 347 mm), the aforementioned compounds undergo (E/Z)-isomerization followed by γ-H abstraction. The intermediate enols are trapped intermolecularly by siloxycarbenes leading to the dimeric acetals 27A + B, 30A + B , and 31A + B . In addition, the acylsilanes (E/Z)- 7 undergo photoisomerization by δ-H abstraction furnishing the acylsilanes 29A + B . Flash vacuum thermolyses (FVT) of (E/Z)- 7 , (E/Z)- 8 , and (E)- 9 give rise to intramolecular reactions of the siloxycarbene intermediates. Thus, FVT (520°) of (E)- and (Z)- 7 selectively leads to the enol silyl ethers 32 and (E)- 33 , respectively, arising from carbene insertion into an allylic C–-H bond. FVT of (E/Z)- 8 (560°) and (E)- 9 (600°) affords the trienol silyl ethers 34A + B and the cyclic silyl ethers 37A + B , respectively, which are formed by CH insertion of the siloxycarbenes. As further products of (E)- 8 and (E)- 9 , the bicyclic enol ethers 35 and 36 are formed, presumably via siloxycarbene addition to the cyclohexene C?C bond.  相似文献   

6.
1n, π*-Excitation of the γ,δ-epoxy-enone (E)- 3 leads exclusively to the conformers (Z)- 3A + B . On 1π, π*-excitation of (E)- 3 , in addition to (Z)- 3A + B , products 6–9 arising from a carbene intermediate e are formed. However, products of an isomerization via C(γ), O-bond cleavage of the oxirane were not formed on either mode of excitation. On thermolysis, at 80° the conformer (Z)- 3A is transformed into (Z)- 3B , which on photolysis returns to (Z)- 3A and (E) -3 . At 160°, however, (Z) -3B rearranges to the isomers 6, 10 and 11 .  相似文献   

7.
Treatment of cyclopropylsilylmethanols derived from cyclopropyl silyl ketones with acid catalyst gives the corresponding silyl-substituted homoallyl derivatives in high yields with good stereoselectivity, independent of the substituents on the cyclopropyl ring. Cyclopropylsilylmethanols having a n-, s-butyl or phenyl group on the carbinyl carbon react to afford the E-homoallyl derivatives selectively. On the other hand, the reaction of cyclopropylsilylmethanols having a tert-butyl group gives Z-isomers exclusively. The following protiodesilylation of the resulting homoallyl derivatives proceeds with retention of configuration.  相似文献   

8.
Photochemistry of Cyclic Acetals of the 1,3-Dioxa-4,6-cycloheptadiene Type UV.-irradiation (λ=254 nm) of 3 gives the isomers (E)- 5 (4%), (Z)- 5 (60%) and 6 (3%). On triplet sensitization (acetone; λ ≥ 280 nm) 3 is converted to (E)- 5 (3%), (Z)- 5 (7%) and 7 (9%). ? The 1π,π*-excitation (λ=254 nm) of 4 yields the isomers 2 (9%), 8 (10%), 9 (34%), 10 (20%) and 11 (3%). On thermolysis (200°) 4 gives 10 (87%) by a Claisen-rearrangement.  相似文献   

9.
On n,π*- as well as on π,π*-excitation, the 4,5-epoxy-α-ionones (E)- 1 , (E)- 2 , and (E)- 3 undergo (E)/(Z)-isomerization and subsequent γ-H-abstraction leading to the corresponding 4-hydroxy-β-ionones (E/Z)- 9 , (E/Z)- 13 , and (E/Z)- 17 as primary photoproducts. On photolysis of (E)- 3 , as an additional primary photoproduct, the β,γ-unsaturated σ,?-epoxy ketone 18 was obtained. The other isolated compounds, namely the 2H-pyrans 10A + B and 14A + B as well as the retro γ-ionones 11 and 15A + B , represent known types of products, which are derived from the 4-hydroxy-β-ionones (E/Z)- 9 and (E/Z)- 13 , respectively.  相似文献   

10.
In the context of the hypothesis postlating a heterolytic cleavage of a C? N bond during thermolysis of alkoxydiazirines (Scheme 1), we report the preparation of the diazirines 4 , 5 , 7 , and 8 , the kinetic parameters for the thermolysis in MeOH of the diazirines 1 and 4–9 , and the products of their thermolysis in an aprotic environment. The diazirines 4 , 57 , and 8 (Scheme 2–5) were prepared from the known hemiacetals 10 , 19 , 34 (prepared from 31 in an improved way), and 42 according to an established method. The oximes 11 , 20 , 35 , and 43 were obtained from the corresponding hemiacetals as (E/Z)-mixtures; 43 was formed together with the cyclic hydroxylamine 44 . Oxidation of 11 , 35 , and 43 (N-chlorosuccinimide/1,8-diazabicyclo[5.4.0]undec-7-ene (NCS/DBU) or NaIO4) gave good yields of the (Z)-hydroximolactones 12 , 36 , and 45 , while the oxime 20 led to a mixture of the (E)- and (Z)-hydroximolactones 21 and 22 , which adopt different conformations. Their configuration was assigned, inter alia, by a comparison with the enol ethers 28 and 29 , which were obtained, together with 30 , from the reaction of the diazirine 5 with benzaldehyde and PBu3. Treatment of the hydroximolactone O-sulfonates 13 , 23 , 37 , and 46 with NH3/MeOH afforded the diaziridines 15 , 25 , 38 , and 47 in good yields, while the (E)-sulfonate 24 decomposed readily. Oxidation of the diaziridines gave 4 , 5 , 7 , and 8 , respectively. Thermolysis of the diazirines 1 and 4–9 in MeOH yielded the anomeric methyl glycosides 50/51 , 16/17 , 26/27 , 52/53 , 39/40 , 48/49 , and 54/55 , respectively. A comparison of the kinetic data of the thermolysis at four different temperatures shows the importance of conformational and electronic factors and is compatible with the hypothesis of a heterolytic cleavage of a C? N bond. An early transition state is evidenced by the absence of torsional strain by an annulated 1,3-dioxane ring. Thermolysis of 1 in MeCN at 23° led mostly to the diasteroisomeric (Z,Z)-, (E,E)-, and (E,Z)-lactone azines 56 , 57 , and 58 (Scheme 6), which convert to 56 under mild conditions, and to 59 (3%). The benzyloxyglucal 59 was obtained in higher yields (18%), together with 44% of 56–58 , by thermolysis of solid 1 . Similarly, thermolysis at higher temperatures of 4 in toluene, THF, or dioxane and of 9 in CH2Cl2 or THF yielded the (Z,Z)-lactone azines 60 and 61 , respectively, the latter being accompanied by the dihydro-oxazole 62 .  相似文献   

11.
The diazirine 1 , upon thermolysis or photolysis in either acetone or cyclohexanone, at different concentrations, yield the spiro epoxides 2 and 3 , and 4 and 5 , respectively (Scheme 1). Yield of 2 and 3 depended both on the temperature and the concentration, and correlated inversely with the yield of the major by-product, the enol-derived glycoside 6 . Other by-product were the benzyloxglycal 7 and the lactone azines 8 . ZnCl2-Promoted methanolysis of 2 under mild condition yielded mixture of the uloside 9 and 10 (1.2:1); similarly, 4 yielded 11 and 12 (1.8:1; Scheme 2). More strongly acidic conditions converted 11 into 12 , evidencing that ZnCl2-promoted methanolysis proceeds under kinetic control, which is rationalized. The diazirine 13 , upon thermolysis of Photolysis in either acetone of cyclohexanone, yielded the α-D -configurated spiro epoxides 14 and 16 , and the α-D -configurated dihydrooxazoles 15 and 17 , respectively (Scheme 3), which are either formed by ring-opening of ß-D -epoxides, by competitive interception of the initially formed, hypothetical addition products of the intermediate carbene to the ketones. The glycosylidene carbenes, derived from 1 or 13 are not very reactive towards ketones, yields are good only when sterically unhindered ketones are used in large excess.  相似文献   

12.
Treatment of α,β‐unsaturated ketones with an electrophilic site at the γ‐position in the presence of trimethylsilyl cyanide with bis(iodozincio)methane afforded the (Z)‐silyl enol ether of the β‐cyclopropyl substituted ketone in good yields. The reaction proceeds by 1,4‐addition to form an enolate, and its sequential intramolecular nucleophilic attack to an adjacent electrophilic site. The reaction of γ‐ethoxycarbonyl‐α,β‐unsaturated ketone and bis(iodozincio)methane in the presence of trimethylsilyl cyanide afforded 1‐ethoxy‐1‐trimethylsiloxycyclopropane derivatives, which can be regarded as the homoenolate equivalent. Additionally, reaction of the obtained homoenolate equivalents with imines give 1‐(E)‐alkenyl‐2‐(1‐aminoalkyl)alkanols diastereoselectively.  相似文献   

13.
Azimines. V. Investigation on the Stereoisomerism Around the N (2), N (3) Bond in 2, 3-Dialkyl-1-phthalimido-azimines 2, 3-(cis-1, 3-Cyclopentylene)-1-phthalimido-azimine ( 7 ) and isomerically pure (2 Z)- and (2 E)-2, 3-diisopropyl-1-phthalimido-azimine ( 9a and 9b ) were prepared by the addition of phthalimido-nitrene ( 1 ) to 2, 3-diazabicyclo [2.2.1]hept-2-ene ( 6 ) and to (E)- and (Z)-1, 1′-dimethylazoethane ( 8a and 8b ), respectively. Comparison of their UV. spectra with those of two stereoisomeric azimines of known configuration, namely (1 E, 2 Z)- and (1 Z, 2 E)-2, 3-dimethyl-1-phthalimido-azimine ( 5a and 5b ), reveals that 2, 3-dialkyl-1-phthalimido-azimines with (2 Z)-configuration are characterized by a shoulder at about 258 nm (? ≈? 14,000) and those with (2 E)-configuration by a maximum at 270–278 nm (? ≈? 10,000). The (2 E)-azimine 9b isomerizes under acid catalysis as well as thermally and photochemically into the more stable (2 Z)-isomer 9a . Under the last two conditions the isomerization is accompanied by a slower fragmentation with loss of nitrogen into N, N′-diisopropyl-N, N′-phthaloylhydrazine ( 4 , R = iso-C3H7). The same fragmentation was also observed on thermolysis and photolysis of the (2 Z)-isomer 9a . The kinetic parameters for the thermal isomerization of 9b (they fit first-order plots) and for the fragmentation of 9a and 9b were determined by 1H-NMR. spectroscopy in benzene, trichloromethane and acetonitrile. In the photolysis of 9a or 9b the fragmentation is accompanied by dissociation into the azo compounds 8a or 8b and the nitrene 1 , the latter being subject to trapping by cyclohexene. With the azimine 7 , an analogous thermal fragmentation was observed to give N, N′-(cis-1, 3-cyclo-pentylene)-N, N′-phthaloylhydrazine ( 15 ), but more energetic conditions were required than with 9 . Photolysis of 7 led exclusively to dissociation into the azo compound 6 and the nitrene 1 , perhaps because the fragmentation of 7 is prevented by ring strain.  相似文献   

14.
We report herein a regiodivergent and enantioselective allyl addition to ketones with allenylsilanes through copper catalysis. With the combination of CuOAc, a Josiphos-type bidentate phosphine ligand and PhSiH3, allyl addition to a variety of ketones furnishes branched products in excellent enantioselectivities. The regioselectivity is completely reversed by employing the P-stereogenic ligand BenzP*, affording the linear products with excellent enantioselectivities and good Z-selectivities. The linear Z-product could be converted to E-product via a catalytic geometric isomerization of the Z-alkene group. The silyl group in the products could provide a handle for downstream elaboration.  相似文献   

15.
Photochemistry of 5,6-Epoxydienes and of Conjugated 5,6-Epoxytrienes On singulet excitation (δ = 254 nm) the 5,6-epoxydiene 6 and the conjugated 5,6-epoxytrienes 7 and 8 exclusively give products arising from cleavage of the C, C-bond of the oxirane (cf. 6 → 9 , 10 , 11 ; 7 → (E)- 15 , 16 , 17 ; 8 → 18 (A+B) , 19 (A+B) , 20 , 21 ). The dihydrofuran compounds 11 and (E/Z)- 15 are formed by cyclization of a ketonium-ylide a and d , respectively. Photolysis of a gives the carbene b which yields the cyclopropene 9 , whereas d forms photochemically the carbenes f and g which yield the methano compounds 16 and 17 . The isomeric cyclopropene derivatives 20 and 21 are products of the intermediates h and i , respectively, which are formed by photolysis of the ylide e . The cyclopropene 21 isomerizes by intramolecular cycloadditions to 18 (A+B) and 19 (A+B) . - On triplet excitation (λ?LD nm; 280 nm; acetone) 6 undergoes cleavage of the C(5), O-bond and isomerizes to 12 and 14 . However, 7 is converted by cleavage of the C, C-bond of the oxirane to yield 15 . On treatment with BF3O(C2H5)2 6 gives 14 , whereas 7 yields 22 , and 8 forms 23 and 24 .  相似文献   

16.
On 1n,π*-excitation(λ > 347 nm), the diastereomeric methanoepoxyenones (E)- 6 undergo isomerization via C,O-cleavage of the oxirane leading to diastereomeric photoproducts ((E)- 5 →(E/Z)- 13 and 14 ; (E)- 6 →(E/Z)- 16 and 17 ). On 1π,π*-excitation (λ = 254 nm) of either (E)- 5 ) or (E- 6 the photoproducts 9, 10 and 11 are formed. By laser flash photolysis (λ = 265 nm) the ylide intermediate 3 was detected, with a lifetime of 10 μs in MeCN at ambient temperature. Stern-Volmer analysis of the ylide quenching by MeOH disclosed that compounds 9 and 10 , but not 11 , arise from the ylide intermediate e .  相似文献   

17.
The regio‐ and stereoselective preparation of fully substituted and stereodefined silyl enol ethers of ketones and aldehydes through an allyl‐Brook rearrangement is reported. This fast and efficient method proceeds from a mixture of E and Z isomers of easily accessible starting materials.  相似文献   

18.
Vinylogous β-Cleavage of Enones: UV.-irradiation of 4-(3′,7′,7′-trimethyl-2′-oxabicyclo[3.2.0]hept-3′-ene-1′-yl)but-3-ene-2-on On 1π,π*-excitation (λ = 254 nm) in acetonitrile (E/Z)- 2 is converted into the isomers 4–9 and undergoes fragmentation yielding 10 ; in methanol (E/Z)- 2 gives 7–10 and is transformed into 11 by incorporation of the solvent. On 1π,π*-excitation (λ λ?347 nm; benzene-d6) (E)- 2 is isomerized into (Z)- 2 , which is converted into the isomers 3 and 4 by further irradiation. 1π,π*-Excitation (λ = 254 nm; acetonitrile) of 4 gives 6 and (E)- 9 , whereas UV.-irradiation (λ = 254 nm; acetonitrile-d3) of 5 yields (E)- 7 and 8 . On 1π,π*-excitation (λ = 254 nm; acetonitrile) of (E/Z)- 12 the compounds (E)- 14 and (E)- 15 are obtained.  相似文献   

19.
The wavelength dependence of the photolysis of 7-methyl-β-ionone ((E)- 1 ) was investigated. Irradiation of (E)- 1 with light of λ > 347 nm leads primarily to (E/Z)-isomerization followed by transformation to the tricyclic enol ether 3 as the only secondary photoproduct. On photolysis of (E)- 1 with light of shorter wavelength (λ > 280 nm or λ = 254 nm), however, a series of other products was formed (via a) photocyclization of the dienone chromophore (→ 5 ), (b) photo-enolization (→ 8 ), and (c) a 1,5-sigmatropic H-shift (→ (E/Z)- 7 ). For the structure elucidation of the new products, 7-[13C]methyl-β-ionone ((E)-[7-methyl-13C]- 1 ) was prepared and irradiated furnishing the corresponding 13C-labelled photoproducts.  相似文献   

20.
Acetonitrile oxide reacts regioselectively with 3-buten-2-one and (E)-4-methoxy-3-buten-2-one to give 5-acetyl-2 and 4-acetyl-3-methylisoxazole 3, respectively. Treatment of ketones 2 and 3 with trimethylsilyl trifluoromethanesulfonate gave the silyl enol ethers 4 and 5, whereas the methyl enol ethers 8 and 9 were obtained via elimination of methanol from the corresponding dimethyl ketals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号